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ABSTRACT *

Interplanetary scintillation data collected at Stanford during
the period 1968-1973 are reported. These data were acquired by sending
50 and 423 MHz signals from Stanford to the sun-orbiting Pioneer 9
spacecraft and then telemetering results back to the earth. For the
first time, the integrated electron contents along the propagation
path were also simultaneously measured. The closest distance of the
propagation path to the sun ranged from 0.1 to 1 A.U. Unlike noisy
natural sources such as quasars or pulsars which were used in most
previous experiments, our ground transmitter served as a constant-
magnitude, monochromatic, point source of observation. As a result,

our data are free from some inherent ambiguities contained in the

majority of the previous data.

Experimental apparatus and procedures of data reduction are
described in considerable detail. The so-called thin-screen dif-
fraction model is reviewed and applied to interpret our observations,
leading to several interesting and useful results. The spatial power
spectrum of interplanetary inhomogeneities is found to follow a power-
law variation; the mean and standard deviation of the power-law
exponent are estimated to be 3.5 + 0.13 and 0.3, respectively. This
result agrees with in situ spacecraft measurements near 1 A.U. In
addition, the magnitude of the temporal spectrum of electron-density
fluctuations deduced from our scintillation data is also consistent
with in situ measurements. Based upon the forms of the observed
scintillation spectra, the existence of a gaussian micro-structure in
the interplanetary medium, as suggested by many other authors, is
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tpectra are observed. (Eight solar wind velocities inferred from eight
such structures lie between 400.and 500 km/sec.

The radial dependence of the correlation length of intensity
fluctuations is shown to be compatible with the power law model of
exponent 3.5. The radial dependence of the scintillation index indi-
rates that the root-mean-square electron-density fluctuation in the
colar wind is inversely proportional to the square of the heliocentric
zistance from the sun. The wavelength dependence of the correlation
tength and that of the scintillation index, nevertheless, remain
unexplained.

The study of the cross-correlation between the integrated electron
content and the scintillation index reveals that not only these two
parameters but also their deviations from means are approximately
Tinearly related. This suggests that scintillation observations may
be employed as an efficient means for monitoring both the density and
density enhancements in the regions too near the sun to be accessible
to direct measurements.

In cases of very strong scintillations, the form of the observed
scintillation spectra becomes exponential, and the occurrence of these

exponential spectra may be caused by the very strong wave scattering

phenomenon rather than genuine changes of the turbulence spectrum forms.
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Chapter I “
INTRODUCTION

A. Background and Previous Research

.The rapid fluctuations in received signal strength caused by the
interplanetary plasma inhomogeneities along the propagation path are

termed interplanetary scintillations or IPS. IPS was first dis-

covered by Hewish, Scott, and Wills (1964) during a series of observa-
tions of radio stars, which exhibit random fluctuations of intensity
at 178 MHz, with a time scale of 1-2 seconds. Because observations
of IPS provide a valuable and relatively inexpensive means for studying
the interplanetary medium (especially those regions of the medium at
heliocentric distances not yet accessible to direct measurement), they
have since been intensively extended to both Tower and higher frequen-
cies over a wide range of solar elongation [see, for example, Cohen
et al. (1967), Antonova and Vitkevich (1967), Litt]g and Hewish (1968),
Cohen and Gundermann (1969), Hewish and Symonds (1969), Lovelace et al.
(1970), Little (1971), Vitkevich and Vlasov (1972), Zeissig and Lovelace
(1972), Houminer. and Hewish (1972), Watanabe and Kakinuma (1972),
Hewish (1972), Rickett (1973), Coles et al. (1974), Rao et al. (1974), .
and Marians (1975)].

Like all other inversion problems, in which the characteristics
of the medium are extracted from the characteristics of the received
signal after its transit through the medium, the interpretation of
these IPS data relies completely upon the establishment of an adequate
wave-propagation model. Because electron-density fluctuations, and
therefore refractive-index fluctuations, of the interplanetary plasma

decrease sharply with the radial distance from the sun, most theoret-




ical models adopt for'analytica] convenience the so-called thin

phase-changing screen approximation [e.g., Little and Hewish

(1966), Salpeter (1967), Bramley and Young (1967), Jokipii (1970),

Lovelace et al. (1970), Cronyn (1970), Jokipii and Hollweg (1970),

Cronyn (1972 a, b, c), Matheson and Little (1971), Bourgois

(1972), Rumsey (1975), and Marians (1975)]. In this approximation,

the interplanetary irregularities responsible for IPS are assumed

to be confined to a thin layer (situated at the point of closest

approach of the ray path to the sun) which imposes irregular

phase changes on the incident wave. The randomly phase-modulated

wavefront emerging from the thin layer can be decomposed into a

number of plane waves travelling in different directions. As the

wavefront passes beyond the thin layer, these plane-wave components

begin to interfere with each other, forming a diffraction pattern

(i.e., a two-dimensional pattern of intensity fluctuations) in

the plane of observation. Because the irregularities and hence

the resultant diffraction pattern are conveyed away from the sun

by the solar wind, the record of intensity fluctuations obtained

at a fixed site may then be visualized as a line scan of the

diffraction pattern along the direction of the solar-wind velocity.
One important theoretical result is worth mentioning ﬁere.

Due to the Fresnel filtering effect (Sec. II.A), it is well

known that density fluctuations on the scale much greater than

the radius of the first Fresnel zone (~ a few hundred km at

VHF/UHF) will not contribute IPS. Stated in another way, IPS

can be used to probe only small-scale inhomogeneities in the

solar wind.




Almost all interpretations of IPS data published before 1970
were founded on the assumption that the spatial spectrum of electron-
density fluctuations in the solar wind followed a gaussian form.
Early IPS observations, appearing to be consistent with such an

assumption, led to the following major conclusions:

1. The observed temporal spectra of intensity fluctua-
tions in the weak scintillation regime were often
fairly close to gaussian [Cohen et al.(1967)].

2. There existed a micro-structure of electron-density
fluctuations in the solar wind, whose power spectrum
was probably best described by a gaussian function
[Hewish (1971), Buckley (1971), Little (1971), Hewish
(1972)]. The scale size of this micro-structure, which
might be deduced from the width of the observed dif-
fraction pattern, was on the order of a few hundred
km near 1 A.U. and decreased approximately linearly
with decreasing radial distance from the sun [Little
(1971), Readhead (1971), Hewish (1972)].

The validity of the gaussian-density-spectrum assumption began

to be suspected in 1970 by Lovelace et al. (1970), Jokipii and Hollweg

(1970), Hollweg (1970), Cronyn (1970), and Jokipii (1970). Lovelace
et al. (1970) presented eight observed spectra of intensity fluctua-
tions and demorstrated that a number of these spectra over the fre-
quency range 1-10 Hz could be interpreted in terms of a power-law
density spectru-. Based upon the fact that the power spectra of
interplanetary magnetic-field and plasma-velocity fluctuations near
1 A.U. exhibit=Z a power-law dependence over the frequency range
107

(1970) suggest

h

= that the density spectrum would also be of the same

- 10'2 Hz. Coleman (1968), Jokipii and Hollweg (1970), and Hollweg

[ —



. numbers from ~ 5 x 10

power-law form if the™macnetic field was frozen (or locked) into the
turbulent plasma. Bucklzyv (1971) agreed that on scales much greater
than the proton gyro-rad-xs+, variations of proton density (and there-
fore electron density:) z»d magnetic field would tend to follow one
another; however, he arg.=d that for length scales less than a few
hundred km, the "frozen < °eld line" concept might start to break down
such that the magnetic-fiz1d and plasma-density spectra could uncouple.
The first in situ measurzvent of proton density spectrum near 1 A.U.
over the frequency range ’0'4 to 10'3 Hz [Intriligator and Wolfe
(1970)] confirmed that tr= density spectrum in this frequency range

did have a similar power-‘aw behavior as that of magnetic-field and
velocity spectra; nevertr=less, it did not have high enough frequency
resolution® to preclude t-e existence of the gaussian micro-structure
(~ 100 km) proposed by Heaish (1971), Buckley (1971), and Hewish (1972).
Fortunately, the second and also the last (to date) in situ measurement
of proton density spectru~ near 1 A.U. [Unti et al. (1973)] spanned

-3

the frequency range from 4.8 x 10 ~ to 13.3 Hz (corresponding to wave-

ERVERR km']) and thus had enough frequency

resolution to yield information about the small-scale inhomogeneities

Accord1ng to Little (1971), the proton gyro-radius increases from
~ 1 km at 0.1 A.U. to -~ 100 km at 1 A.U.

Because the Debye length is only a few meters, the electron density
spectra should follow proton density spectra out to wave numbers
near 1 meter-! [Coles et al. (1974)].

Tem?oral frequency v in Hz is related to spatial wavenumber q in
km=
= g

VT 2n

where U is the solar wind velocity in km/sec. For U = 500 km/sec
nea!|‘ 1 A.U., Vv = ]0'4 - ]0'3 Hz COY‘Y‘ESpondS to q = 10_6 _ ]0_

[P
K -




responsible for IPS. Twenty-five out of 32 (~ 80%) observed spectra
were found to be interpretéb]e by a single, continuous, three-dimen-
sional, power-law irregularity spectrum, with the exponent of the power
law, denoted by p, equal to an average value of 3.55.

The controversy between gaussian and power-law models seemed to
- be temporarily settled after Unti's direct evidence supporting forcibly
the power-law model had been put forward. Many questions, however,
have remained as yet unresolved. For example, both Intriligator
and Wolfe's and Unti's in situ measurements of proton-density spectra
covered only regions in the IPM (interplanetary medium)'of heliocentric
distances ~ 1 A.U. from the sun; is the plasma-density spectrum in regions
closer than 1 A.U. from the sun also describable by a power-law function?
If so, what is the value of the power-law exponent p in these regions?
Does it vary systematically with the radial distance from the sun?

The answers to the above questions are certainly important because
they would help not only in understanding the turbulence structure of
the interplanetary plasma but also in determining what energy transport
processes cause the turbulence. As most regions of the IPM will remain
inaccessible to direct spacecraft measurements in the foreseeable future
and since IPS will continue to be one of the major methods to probe the
IPM for some time to come, it has become desirable to check if one.can
reconcile IPS observations with in situ measurements (so that the merits
of the IPS metﬁod may be reevaluated). For this purpose, Table 1.1 sum-

marizes all six published values of the power-law exponent p+ obtained

t In deriving these values of p, Cronyn's (1970) theoretical results
had been invoked. Briefly speaking, his results state that if the
three-dimensional, spatial power spectrum of density fluctuations is
power law with index p, then the temporal power spectra of (1)
density fluctuations seen by a space probe and (2) intensity scintil-
lations observed at a single site will also be power law with exponent
p-2 and p -1, respectively.
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by these two different methods. Note that quasaf%, which are extended,
noisy radio stars at an essentially infinite distance (say ~109 light
years) from the earth, were invariably used as sources in all three

listed IPS observations. While the three values of p (3.2, 3.3, 3.55)
deduced from in situ measurements are in good accord with one another,

the other three values of p (4-5, 2.4, 2.6) acquired from IPS observa-
tions appear to be either too large (4-5) or too small (2.4, 2.6).
Although the rather large value of p (4-5) found by Lovelace et al.
(1970) may be attributed to the finite source-diameter effect+ (Sec. II.
1), it is not immediately clear why the two values of p (2.4 and 2.6)
secured by Houminer (1973) and Coles et al. (1974), corrected for the
source-diameter effect, are significantly smaller than those resulting
from in situ measurements. Coles et al. (1974), during an attempt to com-
pare their spectra with other published IPS spectra, have admittéd ihat
the source structures (of_quasars) at Tow radio frequencies are so uncer-
tain that corrections of source-diameter effects cannot be confidenfly
applied to other published IPS spectra. If this is true, then the accuracy
and reliability of many published IPS data (including spectral forms, spec;
tral exponents, spectral widths, and temporal widths of the diffraction
pattern) are limited to this uncertainty factor, and the use of man-made
point source for IPS observations will be preferable to that of quésars

L

or pulsars .

¥ Radio sources having a finite angular size 6, (s 1 arc sec for
quasars) may blur (or smooth out) the fine structures [namely,
structures of sizes smaller than -z8,, z (~ 1 A.U.) being the
distance from the earth to the thin screen] of the diffraction
pattern, thereby attenuating the high-frequency components of the
scintillation spectra and giving rise to a much steeper power law.
g
"Although pulsars have very small intrinsic size ($ 1076 arc sec) and
may be regarded as point sources, the pulsed and erratic nature of
the vadiation {Zeissig and Lovelace, 1972) and the uncertainty of
the effects of interstellar scattering are the difficulties associ-
ated with using pulsars as sources of IPS observations.
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B. Advantages of Present Experiment

During superior conjunction (March 27 - April 7, 1966) of the
Mariner 4 spacecraft to the sun, the bandwidth broadening of the 2295
MHz CW transmissions from Mariner 4 to earth was observed [Goldstein
et al (1967)]. Yakovlev and Yefimov (1971) obtained the distance
dependence of radio wave fluctuations at 1000 MHz as the Venera 7
spacecraft was flying along the line Earth-Venus. Except for these
two cases, all published IPS data so far have been based almost entirely
on observations of either quasars or pulsars, whose disadvantages
were just pointed out in the last paragraph of the previous section.

By sending 49.8 and 423.3 MHz signals simultaneously from Stanford to
the sun-orbiting Pioneer 9 spacecraft, digitizing the received signal
strength, and then telemetering back to the earth via the spacecraft
S-band telemetry system, we have obtained, from 1968 to 1973, 77 usable
sets of IPS data over a wide range of solar elongations: 0.1-1 A.U.

A typical set of IPS data for each frequency contains a total of
~1,000 digital samples over a duration of ~30 seconds. The sampling
rate 36.6 samples/sec, which corresponds to the Nyquist frequency 18.3
Hz, appears to be sufficient in comparison with the 10 Hz bandwidth
of the pre-sampling low-pass filter. The quantization noise introduced
during encoding each spacecraft-received signal strength into a 6-bit

6. 64 discrete levels) for telem-

code word (i.e., into one of the 2
etry is a nonlinear function of the received signal strength and is
more severe when the received signal strength is weaker.

The greatest advantage of the present experiment over the previous
ones is, of course, the use of a man-made, constant-amplitude, mono-
chromatic, point source at a known distance within the IPM; consequently,
our
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as source-diameter effects, interstellar scattering, or erratic radia-
tion from natural sources. In addition, the integrated electron content
along the propagation path has, for the first time, been simultaneously
~measured. Comparing these electron-content-data with the simultaneously
acquired IPS data, therefore, provides a dnique opportunity to study- the

correlation between the electron content and the IPS phenomenon.

C. Organization

Chapter II reviews IPS theories and other theoretical results rele-
vant to our experiment. The concept of the "thin phase-diffraction
screen" approximation is introduced, and different (mainly gaussian
and power-law) models for the spatial power spectrum of electron-
density fluctuations are considered, leading to different exp]icit
formulae for scintillation parameters, including (1) scintillation

'_spect;um, (2) width of the scintillation pattern, and (3) scintilla-
tion index. Finally, possible effects of the finite source-diameter‘
on both the slope of the scintillation spectrum and the magnitude of
the scintillation index are discussed.

Chapter III is primarily a description of the geometry and appara-
tus of the IPS experiment. Instrumental parameters and limitations
pertinent to the experiment are included. Because the Stanford PLL
(phase-locked 1oop) receiver on board the spacecraft actually measures
SNR (signal-to-noise power ratio) instead of signal power, the calcula-
tion of the total received noise temperature, which is essential to
the extraction of the signal power from the SNR, is included. Also
touched upon is the basic operational principle of the electron con-

R tent measurement. This whole chapter except Sec. A may be skipped by

readers who are not interested in the details of th
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The procedures of data reduction are detailed in Chapter IV. The
first step is to clean up the received IPS data, which is contaminated
with receiving antenna and received noise patterns. After data clean-
up, scintillation parameters (such as the autocorrelation function and
power spectrum of intensity fluctuations and the scintillation index)
are then computed. During the calculation of the autocorrelation func-
tion and power spectrum, the FFT (fast Fourier transform) algorithm is
employed to save the computational time. For obtaining a physically
meaningful estimate of the power spectrum, the procedures of the so-
called Blackman and Tukey method (1958) are followed. Finally, the
logic of an important computer program, devised to determine which of
the three models (namely, power-law, guassian, and exponential) fits
best our observed power spectra, is thoroughly described.

Chapter V is devoted to results and interpretations. Detailed
comparisons between existing theories and measured data are made. The
last chapter, Chapter VI, presents conclusions together with recommen-
dations for future research. Several topfcs of secondary importance

are treated in appendices.

D. Contributions tovKnowledge

Processing and analysis of these unique, dual-frequency, IPS data
acquired from a man-made point source at VHF/UHF have yielded many

valuable contributions to knowledge:

(1) The spatial power spectrum of small-scale (~50 to
500 km) interplanetary electron-density fluctuations,
over the range 0.1-1 A.U. from the sun, is found to
follow a power-law variation; the mean and standard
deviation of the power-law exponent are estimated to
be 3.5 £ 0.13 and 0.3, respectively. This result is

I S P P

with in situ measurements, near 1 A.U.
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(cf. Table 1.1); it further implies thdt the micro-
structures of the solar wind turbulence within 0.1-
1 A.U. from the sun could be generated by the same

plasma process, a process that is capable of producing
power-law turbulence.

(2) In cases of very strong scinti]lafions, the form of
the observed scintillation spectra becomes exponen-
tial rather than power-]aW§ the very strong wave
scattering phenomenon may be responsible for the
occurrence of these exponential spectra.

(3) Based upon the forms of the observed scintillation
spectra, the existence of a gaussian micro-structure
in the IPM, as suggested by Hewish (1971), Buckley
(1971), Hewish (1972), and Rao et al. (1974), is shown
to be precluded.

(4) 1In addition to the power-law exponent p, the mag-
nitude of the temporal spectrum of electron-density
fluctuations inferred from our scintillation data is
also found to agree with that measured by the 0GO0-5
satellite [Unti et al. (1973)], proving further the
usefulness of the IPS technique in yielding definite
information on the interplanetary turbulence spectrum.

(5) For the first time the turnover behavior of rw VS
p 1is being experimentally reported, where "W is
the correlation length of intensity fluctuations and
p is the proximate distance+ of the radio path to
the sun. The increase of 'y with p (rw x 02'2)

in the strong scintillation regime [which had been

misinterpreted as the manifestation of the increase
of the interplanetary irregularity sizes by Cohen and

Gundermann (1969), Hewish and Symonds (1969), Little

(1971), Readhead (1971), Lotova and Chashey (1972),

T The proximate distance of the radio path can be briefly defined as
the closest distance from the radio path to the sun. Further dis-

cussions of this definition may be found in Sec. III.A.

1




(6)

(7)

and Hewish (M972)] is found to be ascribable to

the effects of strong scattering from power-law
irregularities, whereas the decrease of Tw with

p 1in the weak scintillation regime is interpreted as
caused by the decrease of the radius of the first

Fresnel zone.

In contrast to most results of the scintillation index
m obtained by using quasars as sources [see, for
example, Cohen et al. (1967), Cohen and Gundermann
(1969), Hewish and Burnell (1970), Rickett (1973),

and Marians (1975)], no systematic turnover of m
with decreasing o is observed for our point-source
IPS data. This confirms, at least partly, the conjec-
ture that the turnover of m 1is due to the finite
source-diameter effect.

The scintillation index m 1in the weak scintillation
regime varies with the proximate distance o as

m « p']'s, implying that the radial dependence of
the rms (root-mean-square) electron density fluctua-
tion in the IPM follows approximately an inverse-
square law.

The integrated electron content I along the propaga-
tion path is found to be directly proportional to the
scintillation index m 1in the weak scintillation
regime; furthermore, the deviations of I and m
from their means are seen to be strongly correlated,

suggesting that IPS observations may be utilized as an
efficient means for monitoring both the density and
density enhancements in the IPM,




Chapter 11 4

THEORY

A. Thin Phase-Diffraction Screen Model

Consider a radio ray passing close to the sun. Since the density
and the density fluctuations of the interplanetary plasma fall off
quite rapidly with radial distance from the sun, most of the scatter-
ing takes place within a thin plasma slab near the sun. In cases of
practical iﬁ}erest, absorption is negligible. If fhe plasma slab is
sufficiently thin, the wavefront on emergence from the s]éb is modulated |
in phase only, and the subsequent propagation in the medium beyond can
be treated aé a phase-screen diffraction problem in the free space.

(If the plaﬁma slab is thick, diffraction inside the slab cannot be
neglected and the emerging wavefront will be modulated in both amplitude
and phase.)

This has led to the idea of an equivalent thin phase-diffraction

screen model [Salpeter (19€7)]. In this model, the turbulent inter-

planetary plasma a]oné the line-of-sight is first replaced by a thin
plasma slab of thickness L with its center located at the point of
closest approach to the sun. -Fig.'2.1 illustrates the simplified
geometry, where U 1is the solar wind velocity assumed to be in the
x-direction, p 1is the proximate distance to the sun of the source-
observer trajectory, and z is the distance from the exit plane of
the plasma slab to the observer's plane. Consider a monochromatic
plane wave propagating in the z-direction. Diffraction and refraction
within the plasma slab may be neglected if L 1is small enough such
that the total linear deviation of a ray at the exit plane of the

slab is much less than the transverse correlation length of the

13
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irregularities [Salpeter (1969), Lovelace (1970),4Cronyn (1970)].
Accepting this approximation, the emergent ray (after traversing

through the slab) has suffered no variation but a phase retardation

given by
L/2
- 27
o(x,y) = Tf u(x,y,z)dz (2.1)
-L/2
Fe 2
where u = index of refraction = 1 - 5o A N(x,Y,2z)

for the high-frequency approximation and

ra = classical electron radius
A = radio wavelength
N = electron density
Let 86(x,¥) = 4(xy) - {plx,¥)) (2.2)

where <> denotes spatial average. Then according to (2.1) and (2.2),

L/2
Bp(x,y) = -r ) f AN(x,y,z)dz
-L/2
IN(x,y,2) = N(x,y,2) - (N(x,y,2)) (2.3)

Assuming that AN (and hence A4¢) 1is a spatially stationary random

process, we get

¢02A¢(x,y) = (Ad(x',y"')Ad(x" + x,y' + y))
L/2
- i .2 rf - ] R i fn a\
= (r‘e)\No) JJ l-\n\x,y,z - 2')az az \2.4)
-L72 -
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where ¢, = r.m.s. ph5§e deviation
A = normalized autocorrelation function of phase fluctuations;
A(0,0) =1
N, = r.m.s. electron density deviation
An = normalized autocorrelation function of electron density

fluctuations; An(0,0,0) = 1

If L 1is much greater than the correlation length of An in the z-

direction, we see from Appéndix A that

0 Ay (x5Y) = L(rexNO)ZJf' A (x.¥,2). dz (2.5)

-C0

Define the two-dimensional spatial spectrum of phase fluctuations as

R YRICRE: ) ,
Fylaxety) = f[e 0,2 Ay(x,y) dx dy (2.6)

and the three-dimensional spatial spectrum of electron density fluctua-

tions as

e i(qx + 9,y + q,2)
_ ] X b4 2
Fn(qx,qy,qz) = ——(2“)3 [/f e | N, A (x,y,2) dx dy dz

(2.7)

where 9, 9y and q, are spatial frequencies in x, y, and z direc-

y
tions respectively. Fourier-transforming both sides of Eq. (2.5) gives

[cf. Tatarski (1961), Eq. (6.34)]

2
Folaysa )

o ) = 21rL(r‘e>\N0

y Fn(ay:9y,9, = 0) (2.8)
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This implies that the thin plasma slab can further be replaced by

a random phase screen at the exit plane of the slab and that the spatial
spectrum of the phase screen is proportional to Fn(qx,qy,o). Notice
that q, = 0 corresponds to the integration of the irregularities along
the z-direction as seen from (2.5). For conceptional convenience, the
randomly corrugated wavefront can be thought of as composed of a number
of plane waves propagating in various directions. As the wave travels
away from the screen, amplitude (and hence its square, intensity) fluc-
tuations are then built up by the interference of these plane-wave com-
ponents.

Let I(x,y) be the received intensity (or power) in the observer's
plane, which is parallel to the screen but at a distance z from it.

The normalized spatial autocorrelation function of I(x,y) is defined by

A(xy) = T{x' Ly ) I(x' + x,y! +y)> - (I(x 2y ))2 (2.9)

(I(x',y )>

and its Fourier transform

o y Ha,x + )
FI(qx,qy) -W é[ Ar(x,y)e X dx dy (2.10)

is termed the "spatial spectrum of intensity fluctuations." If 2z >>
outer scale of A¢ >> inner scale of A¢ >> A, then the wave field may
be deemed a scalar and the Fresnel approximations to the Huygen-Fresnel
Principle applies. Furthermore, if the scattering is weak, there is a
simple relation between FI(qX,qy) and F¢(qx,qy) [Bowhill (1961),

Budden (1965), Salpeter (1967), Lovelace (1970), Cronyn (1972b, c)]:

Flaea,) = 4 sin’ GF (0, + 9,111 Fyla,.0) (2.11)
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‘A sufficient conditior for the validity of weak-scattering limit is that
2

0

¢ © << 1. For ¢02 >> 1, Jokipii (1970) has shown that (2.11) may
still hold provided that (1) the contribution to ¢, from irregularities
of size /Az and smaller is much less than unity and (2) F¢(qx,qy) is

Lo
negligible for qx2 + qy2 > 77} .

Combination of (2.8) and (2.11)
leads to

. 2 2z 2, 2
Fray»ay) = 8rL(arg)" sin® [z (9" + 9, %)] Fi(q,59,,0)  (2.12)

which has been much used in discussing interplanetary scintillations
[Lovelace et al. (1970), Cronyn (1970, 1972b), Matheson and Little (1971)]
and ionospheric scintillations [Rufenach (1972), Singleton (1974)].

It is well known that the propagation phenomenon between parallel
planes acts as a linear dispersive spatial filter [Goodman (1968)].
Therefore, the 4 sin” [zZ (q 2 + q,/)1 factor in (2.11) and (2.12),
which accounts for the propagation effects in the Fresnel diffraction
region, is often referred to as the Fresnel filtering function and

designated by

€ oop s PAz 2 2
¥ =4 sin [4Tr (qX + qy )] (2.13)
Qe = Fresnel spatial frequency = %% (2.15)

Eq. (2.13) can be rewritten as

4

4a/q¢)” 5 9 < g

f =4 sin (q/qr)2 = { (2.16)
2 » 9> Qg
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Inserting (2.16) in (2.12), +

= 2"
Fr(aysq,) = 2rL(xr,) FF(9,54,,0) (2.17)

~

{8vL(Are)2(q/qf)4Fn(qx,qy,0), q < qg o
2.18

‘ 2
4L (Arg)"F (q,50,,0), 9> q

For q > qg, FI(qx,qy) has the same form as Fn(qx,qy,O). For q < ae
2
ViZ
one would not expect to see significant intensity fluctuations caused by

~

, ¥ imposes fourth-power filtering on Fn(qx,qy,O). Therefore,

irregularities larger than v/Xz (i.e., spatial frequency smaller than qf).
In all the previous derivations it has been assumed that the source
is a point source at infinity; i.e., the incident wave is a uniform plane
wave. It can be easily shown [e.g., Bowhill (1961)], however, that all
the above results can be extended to apply to a point source at a finite

distance by redefining z as
1_1 1
s 7 t3 (2.19)

where z . and z, are the source-to-screen distance and the observer-to-
screen distance, respectively. For this statement to hold, the cone
angle of diffraction must be small so that paraxial approximation

[Goodman (1968)] can be used. This condition is usually well satisfied

in IPS studies.

B. Temporal Spectrum of Intensity Fluctuations

In principle, AI(x,Y) (the two-dimensional spatial autocorrelation
function of intensity fluctuations) and hence its Fourier transform

FI(qx’qy) can be determined directly by a suitable antenna array. How-

19




ever, with a single antenna at x =y = 0, only the temporal autocor-

relation function of the intensjty fluctuations is measured:

Ay(1) = TIOT(ET) - TE) (2.20)

where T is the time lag. For T $2 sec [Coles et al. (1974)] and

reasonably small elongation of source, it is a fairly good approximation
to assume that the solar wind is frozen and moving along the x-direction
with speed U. In this case, a single antenna scans a narrow line
across the two-dimensional diffraction pattern, and AI(T) is readily

related to AI(x,y) by

AI(T) = AI(x =Ut , y =0) (2.21)
Thus putting x = Ut (2.22)
and q, = 2m/U (2.23)
we have

Fr(¥)

[}
Sl=
]
8‘-.~\8
H>
=
-t o
N
3
~
(a9

/ FI(qqu) dqy (2.24)

gTL(Ar )¢ £
_ e .2 Az 2 2
Fr(v) = —5—— f sin [Tm (a,” +a, )J Fn(ay-9,:0) da,  (2.25)
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4 .y
which is a general expression applicable to all types of irregularities.
However, to proceed further with (2.25), it has now become necessary to

specify the form of Fn(qx’qy’o)'

C. Gaussian Spectrum of Electron Density Fluctuations

Almost all the IPS studies published before 1970 assume that

Fn(qx’qy’qz) is gaussian [e.g., Cohen et al. (1967)]; namely,

2
r

_ 0 2, 2 2 2 2
Fa(ay:9,59;) = Ky exp [; = (a," +n"a," + £, )]

r nr., and E&r, being the characteristic sizes of irregularities

09
in the x, y, and z directions, respectively. Substitution of the

above equation into (2.25) gives

_ .2 ]x 2 2 "o 2. .2 2
FI(\)) = Kfsm [74—1; (qx + qy )] exp [— e (qx +n qy )quy (2.26)

0

where

16nL(Are)2
K v KN (2.27)

If irregularities are highly elongated in the y-direction, n >> 1.
The integrand in (2.26) decreases rapidly as qy increases beyond qx/n.

As a result, only the values of qy which are small compared with q

'X
contribute significantly to the integral, and the sin2 term can be
approximated by
. 2| Az 2 2\ o o:n2 Az 2y .
sin [;‘—" (qx + qy )] sin (411 qx ) qy << qx (2.28)

with the aid of (2.28) and (2.23), (2.26) reduces to [see also Singleton
(1974)]
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- 2
~ 2 m v
FI(v) = %fg sin2 [ﬂlz (5) ] exp [-( Lf ) ] yn>> 1] (2.29)
U .

Therefore, the intensity spectrum will display a sequence of zeros (also
minima) at v =0, U//Az, v2U/vXZ, J/3U//Xz, caused by the modulation

2 term. Since this fine oscillating structure is originated

of the sin
from the Fresnel filtering function in the spatial frequency domain, 5t
is frequently called the "Fresnel structure." If z [defined by (2.19)]
is known, then the solar wind épeed U can be readily deduced from the
position of the zeros of FI(v).

At the other extreme, if irreqularities are highly elongated in the
x-direction (i.e., n << 1), then only qy's which are much greater
than 9y contribute significantly to the integral in (2.28). The sin2

term in (2.28) is hence dominated by qy, and FI(v) can be approxi-

mated by

2 e}
reV f .2 (2 .2 "o 2 2
FI(v) K exp [- ( 1) )] / sin (EF a,") exp \- 5= n a, dqy (2.30)

2
mr v
2Kr'/i exp [ ( U° ) ] 5N << (2.31)

a result which is similar to (2.29) except for the disappearance of the
"Fresnel structure."

Up to this point we have been dealing exclusively with the two
limiting cases, n > 1 and n << 1. Now we wish to derive a general
and explicit expression of FI(V) for any value of n.  Introducing

(2.23) into (2.26) and applying the identity
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i

-~
L
.

(2242, M) Ly o (22 mef)  (p g

leads to

| K MoV i; Az 2, 2ma’
FI(v)=§exp L-( 0 ) _[ 1 - cos (?—Tqy +——2—-)

U
(2.33)
i 2
r
0o 2 2
- e -\ d
Xp ( 3 " qy )] qy
With the help of a standard table of integration+, we obtain
-3 r 2 /_
o 2 2 = YT
[exp (- T 9y ) dqy " ¥on (2-34)_
and
© 2
2 r
AZ 2 | 2mAzv o 2 2
f ool o m8)om (5 1)
i/(r n) 2 -
- 0 cos P22+ 172 tan™] (——2—"{—5) (2.35")
i/ 2 2 2 U mr T
1+4[z/(mr “n")]

Substitution of these two equations into (2.33) brings out the desired

explicit formula [see also Bourgois (1972)]:

) .
_ Kv/m Y 2mAzv? ]
FI(v) = 2r exp [- ( T 1 - /cos 6 cos ——IF?—— t s (2.36)
where 06 1is defined by
- -1 2\2
8 = tan ( > 2) (2.37)

m
ry N

T See, for example, p. 485 of Tables of Integrals, Series and Products
by Gradshteyn and Ryzhik (1965).

23




Before examining- the implications of (2.36), let us check it by
considering the two extreme cases discussed previously. As n - ©,

8 >0 and cos 8 1. Therefore (2.36) becomes

Kvm v ? 2mAzv°
Kvm . 2 | v 2 eV c
Tt nkz(U) exp |- ( 0 ) A (2.38)

which is identical with (2.29). On the other hand, if n - 0, then

}
w
-
3

) +-% and cos 6 - 0. Hence (2.36) can be simplified to

2
k12 ABRY) :
Fr(v) = ZKT‘/_%exp [( U° )J i n~>0 (2.39)

0

which is indeed (2.31), as expected.

Inspection of (2.36) leads us to three simple yet important con-
clusions about Fl(v) under the conditions of gaussian irregularities
and weak scattering: [Recall that these two were the conditions
invoked during the derivation of (2.36).]

1. For any value of n, FI(v) always has an envelope
proportional to exp [-(nrov/u)z] in the frequency
range v > v, Ve being the Fresnel frequency
defined by Ve = U/vmiz.

2. A small value of n corresponds to a small contrast
in the Fresnel structure, and vice versa.

th

3. While v decreases, the location of the n minimum

of the Fresnel structure shifts from n Ve (n > =)
to v/ - 1/8 Ve (n~>0), with n=1, 2, 3, etc.

A few remarks relating to these conclusions are necessary. In the

A . . . 11
weak scattering regime, the first conclusion usually

-
On usuaiiy se
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of thumb to determine whether the autocorrelation* function of the
irregularities is gaussian-or not. If the autocorrelation function
of the irregularities is gaussian, the observed envelope of FI(v)
must also be gaussian for v > Ve Furthermore, according to the
second conclusion, the anisotropy ratio n of irregularities may be
inferred from the contrast of the Fresnel structure. Finally, unless

the frequency resolution bandwidth+

of FI(v) is smaller than about
0.06 Ves the slight shifting of the locations of minima mentioned

in the third conclusion is normally undetectable.

D. Power-Law Electron Density Spectrum

Instead of adopting the gaussian model just discussed in the last
section, a number of papers have recently suggested that Fn(q), the
spatial spectrum of interplanetary electron density fluctuations, may
be characterized better by a power law. Among them are Jokipii and
Hollweg (1970), Lovelace et al. (1970), Cronyn (1972c), and Coles et
al. (1974). Strong support of this viewpoint comes from in-situ |
measurements of Fp(d), the interplanetary proton density spectrum,
near the earth [Intriligator and Wolfe (1970), Unti et al. (1973)].
These measurements indicate that Fp(q) can be well represented by
a power law. Since the Debye length in the solar wind is of the order
of only a few meters, Fn(q) should follow the same power law as

1

Fp(q)v does for q S 10 km '. In addition to this evidence, power

laws are also the spectral forms generally predicted by inerfia]-

T Exact determination of Fp(v) would require an infinitely long
piece of data, which is p%ysica]ly impossible. In practice,
Fr(v) can only be approximately estimated from a finite string
of data. Fy(v) thus secured has a nonzero frequency resolution
bandwidth. The calculation of this resolution bandwidth can be
found in Appendix G.




range theories of hydromagnetic turbulence [for example, Kraichnan
(1965)]. |

If the three-dimensional power spectrum Fn(q) of electron-
density fluctuations is a power law spectrum, then if may take the

following form:

%]
?anlqf ) s Eecq<Z (2.40)
0

2
Ky(a, *n7a,

2
F.(a) t&q,

where n and £ = ellipiticities of irregularities along the
y- and z-axis directions with respect to
the x-axis direction

p = power-law exponent of F (q)

L, = outer scale of turbulence (i.e., the size of
the largest inhomogeneous eddies in the solar -
wind)

2, = inner scale of turbulence (i.e., the size of
the smallest inhomogeneous eddies in the solar
wind) '

Physically, L° is the eddy size at which energy enters into the tur-
bulence. As suggested by Coleman (1968), the energy available to feed
the solar wind turbulence is probably originiated from the differential
motion of the interplanetary plasma streams. Such energy is then
cascaded through to eddies of smaller size until the smallest size
L, of the eddies is reached, where all the energy is dissipated
[possibly by proton cyclotron damping--see, again, Coleman (1968)].
Incorporating (2.40) into (2.25) and using a similar argument

to that outlined between Egs. (2.27) and (2.30) in the previous

section, it can be derived that
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A

2
Fr(v) =K sin (JL) v (p-1) ;v > Vg u (2.41)
- V¢ YTAZ

for y-axis elongated (n >> 1) irregularities and
~ KL -(p-1) . :
FI(v) =5V 3oV > v (2.42)

for x-axis elongated (n << 1) 1irregularities, where

3
| 2 o2 p-l
gp-2 L) 8T T

e

K' =K

N n (2m)P-1 r(5)

and T( ) denotes the gamma function. For the case of isotropic
irregularities (n = 1), results obtained from numerical integra-
tion of (2.25) [see Fig. 1 of Lovelace et al. (1970) and also Figs.

5 and 6 of Marians (1975)] indicate that FI(v), in addition to
having an envelope proportional to v'(p'1), also displays a small-
contrast Fresnel strqcture, namely, a sequence of "shallow" minima

[in comparison with the deep minima or zeros in (2.41)] at v = v

Y2v

’I’

‘l’ /5\).',. e o9 Where

<
"
L)

/x% _.(2.43)
In summary, if Fn(q) is power-law with exponent p, then no

matter what value the ellipticity n takes, the envelope of the

temporal spectrum FI(v) of intensity fluctuations in the weak scat-

tering regime is also power-law, but with exponent (p-1). (i.e.,

the spectral index of FI(v) is lower than that of Fn(q) by 1).

Rumsey (1975) and Marians (1975) have shown that this statement
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essentially still holds--at least for the nearly isotropic cases

(n = 1)--even in the strong scattering regime.

£. Exponential Spectrum of Electron Density Fluctuations

If Fn(q) is exponential rather than gaussian or power-law, then

it may be expressed as
F (a) = Ky exp [—ro(qul *la |+ E:qul)] , -(2.44)

Substituting (2.44) into (2.25) and making use of (2.23) results in

21Tr v
_ 0 .2 | Az 2 2
FI(v) = K exp (- T )f exp (-nqy) sin [47r (qx + qy )]dqy
0 .
(2.45)
16mL (Ar )2
where K = —U——e— Ky (2.46)

Following the same argument as that outlined between Eqs. (2.27) and

(2.30) in Sec. C, one can derive that for n >> 1,

o

2'm'o\) . 2 Az 2
Fr(v) = Kexp |- —5—) - sin (37 9y )f exp (-ronqy) dq,  (2.47)
0
K 2 v 2] ( 2TTY‘0\)) }
= —"_o; sin nAz(U) exp |- — (2.48)

and for n << 1, °

R

2mr v
. 2
K exp (- U° ) . f sin (% q.%) exp (-r,na ) dq_  (2.49)

Fiv) ) y y' Py

= 9V‘Kn exp (' 0 (2.50)

- HH \ ~

21rr0v)
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In general, if Fn(q) is exponential, then for any value of n the

envelope of FI(v) is also exponential.

F. Logic of Irreqularity-Form Tests

One essential qualitative point emerging from the results of the
previous three sections is that if the irregularity spectrum Fn(q)
is gaussian, power-law, or exponential, then FI(v), the temporal
spectrum of intensity fluctuations, always possesses the same form as

Fn(q) does. Symbolically,

v'(p']) , if Fn(q) is power-law with exponent p

Fl(v) « { exp(-Av), if Fn(q) is exponential
exp(-sz), if Fn is gaussian (2.51)

where A and B are just two numerical constants. Taking common log-

arithms of both sides of (2.51) leads to an even more useful expression

-(p-1)log(v), if Fn(q) is power law with exponént p
10 log [FI(v)] « {-Av , if Fn(q) is exponential

BV , if F (a) is gaussian (2.52)

Therefore, if 10 log [FI(v)] [i.e., FI(v) in dB] is plotted versus
log (v), v, and vz, then it will appear as a straight line in one
of the three plots provided that the assumed form of Fn(q) associated
with that p]of is correct. It should be emphasized that this is also
the basic logic that will be used later in Sec. IV.D for devising a
computer program to perform irregularity-form tésts.

Since the resu]ts’of these test (which will be presented in Sec.
V.A) support the power-law model, except for the case of "very"

c¥+wman crin+s1
RN i

~ oy ~a il 3 Al [ . - am e S
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more appropriate, only the power-law model--especially the isotropic
case Fn(q) « q'p for simplicity--will be discussed in the remaining

sections of this chapter.

G. Correlation Length of Intensity Fluctuations

Consider the case Fn(q) «=qP.  As pointed out earlier in Sec.

I1.B during the discussion of Eq. (2.18), irregularities much larger

than YAz (i.e., q <<-§%% = qf) are strongly suppressed'by the q
dependence of the Fresnel filtering. Conversely, irregularities much

4

smaller than vAz (%? << ¥Az) are less important because of the fall-
off of Fn(q) with decreasing irregularity size (increasing q).
Hence irregularities of size ~ vAz are expected to contribute most
significantly to intensity fluctuations. It follows from (2.17) that
the resultant two-dimensional spectrum FI(qx’qy) of intensity fluc-
tuations will be dominated by wave numbers in the vicinity of q ~

2n

vk and the autocorrelation function AI(x,y) of intensity fluc-
Z _

tuations, which is equal to the inverse Fourier transform of FI(qx,q

ME

will have width on the order of vAz.

Physically, the above argument can be understood as follows. Con-
sider a plane wave incident on an irregularity of size £ > VAz, z
being the distance from the observer's plane to the irregularity. For
a given observer in the observer's plane, there are many Fresnel zones
across the irregularity of dimension £; consequently, the contribu-
tions of intensity fluctuatioqs from different Fresnel zones of the
irregularity, because of destructive phase differences, tend to can-
cel one another. For this reason, irregularities of size £ >> viz
do not cause significant intensity fluctuations. On the other hand,

irreqularities of size << vz impose much smaller amounts of phase
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fluctuations upon the inc%dent wave, and hence éantribute much less
intensity fluctuations in the observer's plane, than. irregularities

of size ~ /Az. Qualitatively, insofar as intensity fluctuations

are concerned, the random medium can therefore be regarded as con-
sisting of irregularities predominantly of size ~ vYAz. The dif-
fracted wave, which contribute most intensity fluctuations in the
observer's plane, is then confined within a conical sector of angle

~ M/"Z. At a distance z from irregularities (where the observer's
plane is situated), the diffracted wave has a spread of ~ Az/VAz = VAz.
Consequently, the received intensity fluctuations at two points in the
observer's pléne separated by distance greater than YAz will not be
correlated (because they come from different and hence uncorrelated
irregularities); i.e., the correlation length of intensity fluctuations
in the observer's plane is on the order of ~ VAzZ.

Various definitions are available for the correlation length of
intensity fluctuations [Cohen and Gundermann (1969), Lovelace (1970),
Lovelace et al. (1970), Matheson and Little (1971), Rufenach (1972),
Houminer (1973), Rickett (1973)]--either based on the width of FI(v)
(temporal intensity spectrum) or on that of AI(t), the normalized
temporal autocorrelation function of intensity fluctuations. Here,
we define the temporal width t = of AI(t) as the time at which

AI(t) drops to 1/2 of its maximum value
A (t=t,) = 1 max [A[(t)] = % A;(0) | (2.53)

and the correlation length T of intensity fluctuations as

r, =t U (2.54)
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U being the solar wind velocity. For Fn(q) « q-p and 20 < #Az/2n2 <

L
(2.40)], Jokipii and Hollweg (1970) have derived the result that '

, [ and Lo are inner and outer scales of turbulence defined in
° .

in the weak scintillation regime is of the order of /&z/an :

r =0( /5%> (2.55)
m

Note that this result is also what one would expect based on the dis-

cussions presented earlier in this section.

H. Scintillation Index

The scintillation index m, which is a measure of the degree of
scintillations, is defined as the normalized standard deviation of the

intensity fluctuations:

m =2 625 O (2.56)

where <> denotes the time average. Expressed in terms of FI(\)),

we have

m = jFI(\)) dv (2.57)

Substituting ’Fn(q) = KNq'p into (2.25) and carrying out the integra-
tion of (2.57) leads to [Lovelace et al. (1970), Hollweg and Jokipii
(1972)]

me« /KL 2z 4 A4 ' (2.58)




As mentioned by Cohen et al. (1967), m is a somewhat erratic
quantity. It can change a factor of 2 in one day, although it hardly
ever changes more than 20 percent in 2 hours. Based on our dual-fre-

- quency scintillation data, m as a function of the closest distance
from the sun to the ray path will be found, and the validity of the
wavelength dependence given by (2.58)

p*2
ma 24

will also be tested.

I. Effects of Finite Anqular Size of Source

Radio sources having a finite angular size may blur the fine
structure in the diffraction pattern and therefore attenuate high
frequencies in FI(v). This can explain why FI(v) derived from
radio source observations [Lovelace et al. (1970)] usually has a
steeper slope than our point source data (their 3.4 comparing with
our 2.5). Mathematically, if the effective thickness of the medium
is small compared with z, then the intensity I(r), due to a point
source at a small angle © to the z-direction, is well approximated
by I(r+zg) [Hewish and Little (1966)]. Consider a small but finite
source with brightness distribution b(6). The.intensity g(r) |

for such an extended source is then given by

3(r) =fde b(e) I (r + z6) (2.59)
or by convolution theorem

Fo(v) = Fr(v) F_ (v) (2.60)

S
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where Fs(v) is an equivalent source spectrum derived from the b(8).
A gaussian form of Fs(v) is often assumed in theoretical discussions
of the effects of finite source.

Near the sun FI(v) extends to higher frequencies than Fs(v)
and it is the consequent attenuation of high frequencies in FI(v)
which results in the "turn over" of m observed by other workers
[e.g., Cohen et al. (1967)]. For the point source we use, no "turn
over" of m 1is expected to happen as the sun is approached. As will
be seen later in Sec. V.D, our plot of m versus solar elongation

‘ does appear to be consistent with this argument.
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Chapter III
EXPERIMENT DESCRIPTION

By transmitting 49.8 and 423.3 MHz signals from Stanford to the
Pioneer 9 spacecraft and then telemetering digitally coded measurements
back to the earth, 79 usab]e+ sets of IPS data (called "Format D data")
were obtained over a wide range of solar elongations between November
1968 and July 1973. The Pioneer 9 spacecraft went behind the so]ar’disk
during 18-20 December 1970. Intense scattering from the solar corona
cut off the tracking of the 2,292 MHz telemetry signal from December 13
until December 22. On 18 January 1971, we were able to acquire Format D
data at 49.8 and 423.3 MHz for the first time since 2 December 1970. The
smallest proximate distance¢ at which Format D data was still attainable
was 0.08 A.U.* A complete set of Format D data consists, for each fre-
quency, of 1038 data points (or samples), which at sampling rate 37.57
. samples/sec span over a duration of about 30 seconds. Each data point is

an integer between 5 and 63, except during the occurrence of the sun
pulse (Sec. 1II.D) whén an integer smaller than 5 (usually 1) is possib]e.
The digit can be converted into the received signal-to-noise power ratio
by employing a proper calibration curve. The trajectory of the space-
craft, the characteristic of the apparatus, the data format and calibra-
tion, the total received noise temperature, and the interplanetary elec-
tron content measurement will be briefly described in this chapter.
Readers who are not interested in the details of the experiment may find

it adequate to skip to the next chapter after reading Section A.

T A usable set of data is defined as the set of data which does not
contain gaps longer than 0.1 sec--see Sec. IV.B.

¥ The proximate distance is defined in Sec. III.A as the closest distance
from the earth-to-spacecraft line to the sun.

* A.U. is the abbreviation of "astronomicai unit™; 1 A.U. is the average

distance from the sun to the earth (= 1.496 x 10%m).
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A. Trajectory of Pioneer 9

Pioneer 9, the fifth spacecraft to carry the Stanford/SRI receiver,
was launched into a he]ioéentric orbit on 8 November 1968.4r This orbit,
which is essentially in the eclipti¢ plane, is plotted in Fig. 3.1,
; where the plane of the figure is the ecliptic and the sun-earth line
is fixed. Dates in months are marked several places along the trajec-
tory. Note that the spacecraft went behind the sun in late 1970 and
emerged in early 1971.

Though all regions along the propagation path contribute IPS
observed at the receiver, the region nearest to the sun usually con-
tributes the most (see Sec. II.A for justification). The heliocentric
distance of this dominating region, which will be referred to quite
often in later discussions, is defined as the proximate distance of.
the propagation path. According to the trajectory of Pioneer 9, »p
can be equivalently defined as the closest distance from the eafth-to
spacecraft line to the sun. To illustrate this definition, consider-

a triangle with the eafth, the sun, and the Pioneer 9 spacecraft as
the three vertices as shown in Fig. 3.2. Let P, E, and S be the
three interior angles of this triangle:

P = earth-Pioneer-sun angle
E = sun-earth-Pioneer angle
S = earth-sun-Pioneer angle

Furthermore, denote

EP = earth-to-Pioneer distance
PS = Pioneer-to-sun distance
SE = sun-to-earth distance

T SRI (Stanford Research Institute) collaborated with the University,
building the receiver, supplying the higher-frequency transmitter

and the antenna, and cperating them throughout the 8-year cxperiment.
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PIONEER 9

SUN
SE P = PS x SIN (P)
= SE x SIN (E)

"EARTH

(a) P<90°AND E < 90°

SUN SUN
P=PS p=SE
SE
p \
PIONEER 9 & EARTH B\
EARTH PIONEER 9

(b) P>90° (¢) E>90°

Fig. 3.2. DEFINITION OF THE PROXIMATE DISTANCE o.
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Then, for different_va]ues of P and E, p can be expressed as

p = PS x sin (P) =

and

~In terms of A.U., o

p‘:

This gives a simple relation between

SE x sin (E) 5 P < 90°, E < 90° (3.1)
p =PS; P> 90° (3.2)
p =ES ;3 E> 90° (3.3)
in (3.1) can be approximated by
sin (E) AWU. ; P<90°, E< 90°
P and E in the case of P < 90°

and E < 90°, where E is also conventionally defined as the solar

elongation of the spacecraft.

B. Transmission System

The ground-based transmission system at Stanford generates phase-

modulated signals at 49.8 and 423.3 MHz and then radiates them from the

150-foot parabolic dish to the spacecfaft. To control the pointing of

the dish to the spacecraft, a PDP 8 computer is employed.

Some rele-

vant parameters of the transmission system are summarized in Table 3.1.

Frequency 49.8 MHz 423.3 MHz
Transmitter Triode 1inear amplifier Klystron amplifier
Maximum output power 250 KW 30 KW
Transmittipg antenna i 26.4 dB 45.0 dB
gain !
Half power beamwidth 6° 1°
Antenna efficiency ~50% ~50%

Wave polarization

Left-hand eliptical

Right-hand circular

f

ab1. 2 1
avie o. 1.




For line-of-sight propagation in the free space, the arriving
power at the input terminals of the receiver, Pr’ can be easily
calculated by invoking the transmission equation:

_ PthArL

p (3.4)"

r 4nR2

P, = transmitter power in watts

G, = transmitting antenna gain

Kk = transmitting antenna efficiency

A = receiving antenna aperture

L_ = numerical factor accounting for polarization losses

R = distance between transmitting and receiving antennas in
meters

Normally, Pt is so adjusted that Pr'=130-140 dBm for the 49.8
MHz channel and 135-145 dBm for the 423.3 MHz channel; however for
p S 0.08 A.U., even Pt is set to its maximum value (see Table 3.1),
Pr is still very small--because of the intense scattering from the
outer solar corona. This, coupled with intense signal phase variability,
precludes our contact with the Stanford receiver on board the spacecraft

during solar occultation.

For radio propagation through the turbulent interplanetary plasma,

the computation for P_ becomes much more complicated. The reason

is that the wave will, in transit through the solar wind, be scattered
by electron-density irregularities in the medium. To account for

this scattering effect, the so-called effective scattering cross-
section, designated by o, from a unit volume of the medium has to

be introduced; then, integration of o over the effective scattering
volume must be performed. Detailed discussions of these complications
may be found in Tatarski's (1971) Chapter 2 and will not be pursued

hara
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C. Receiving Antennas

The Stanford receiver-on board Pioneer 9 receives 49.8 and 423.3
MHz radiations from the earth by means of two linear antennas mounted
on top of the spacecraft (Fig. 3.3). The 49.8 MHz antenna is a quarter
wave monopole inclined 45° toward the platform of Pioneer 9. The
423.3 MHz antenna is a half wave dipole centered on the axis of the
spacecraft.

In order to stabilize its geometrical configuration, the space-
craft spins about once per second; therefore, the receiving antennas
aboard and their power patterns also spin accordingly. The spin is
in a retrograde direction (or clockwise when looking from the north
ecliptic pole down toward the ecliptic plane) with its axis perpendic-
ular to the ecliptic plane. Variations of the spin rate are explained
as follows. When the spacecraft moves close to the sun, it expands--
because of the heat absorbed--and hence spins slower so as to conserve
its angular momentum; the opposite is true when it moves away from
the sun.

Derived from the procedure outlined in Appendix B, the power
patterns of the receiving antennas in the ecliptic plane are plotted
in Fig. 3.4, where y is the angle measured eastward from the sun-
sensor axis (Fig. D.1) and 0 dB corresponds to the isotropic gains.n
The three main lobes on each pattern evidently result from reflections
of the incoming wave by the geometrical structure (especially, the

three booms) of the spacecraft.
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NORTH POLE OF ECLIPTIC

423.3 MHz RECEIVING ANTENNA
(HALF WAVE DIPOLE)

49.8 MHz RECEIVING ANTENNA
45° (QUARTE WAVE MONOPOLE)

0+~ |}———c+MAGNETOMETER

TELEMETRY ANTENNA

(o) SIDE VIEW

ORIENTATION NOZZLE

MAGNETOMETER

SUN

SENOR g,

SPACECRAFT
ROTATION

wOBBLE DAMPER
(b) TOP VIEW

Fig. 3.3. SPACECRAFT IN-FLIGHT CONFIGURATION.
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Fig. 3.4. POWER PATTERNS OF RECEIVING ANTENNAS IN THE ECLIPTIC PLANE.
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D. Phase-Locked Receiver

A simplified block diagram of the Stanford receiver is shown in
Fig. 3.5. As we can see, it is basica]l; a dual-frequency phase-locked
loop (PLL) systém.

Conceptually, the PLL is a feedback demodulator capable of detec-

ting and tracking the carrier and the modulation phases of a narrow-

band signal in the presence of wide-band noise. The reason for its
being employed in the receiver will not become quite clear until we
come to Sec. III.H, where the "interplanetary electron content measure- i;
ment"--the sole purpose for which the receiver was originally designed--
is discussed. Here, we simply remark the following: Had the purpose
been the scintillation study, not the content measurement, a demodula-
tor other than the PLL might have been chosen. : '
As indicated in Fig. 3.5, three outputs finally come out of the
receiver: (1) fhe modulation phase difference output, (2) the carrier

.f.

phase difference output, and (3) the Format D output.’ While both

(1) and (2) are used for measuring the interplanetary electron
content (Sec. III.H), only (3), the Format D output, may be used for ' %
studying the interpianetary scintillations (IPS). Because studying ‘
the IPS is the main concern here, an attempt will be made to derive
an expression for the Format D output. According to the derivations
to be followed, the Format D output is essentially proportional to
the square root of the input signal-to-noise power ratio.

Referring again to Fig. 3.5, we first observe that each PLL is

preceded by an intermediate-frequency (IF) bandpass 1imiter (BPL)

-

"Format D output" is so named because it is telemetered back to

the earth by the spacecraft in a data format called "Format D."

Although in addition to Format D, the spacecraft has four other

data formats: Format A, 8, C, and £, none of these four is used
for telemetering IPS data.
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having the noise bandwidth of 45 kHz. The reason to insert a BPL
in front of the PLL is to yield near-optimum performance for the
PLL over a wide range of input signal and noise levels . Davenport
(1953) verifies that the output SNR is essentially directly propor-
tional to the input SNR for all values of the latter in the case of
an ideal BPL. Furthermore, he demonstrates that

(%) (-ﬁ-) for (%)‘ $ 0.1 (3.5)

i i

INE

0

where (S/N)o and (S/N)i denote the output SNR and the input SNR,
respectively. Jaffe and Rechtin (1955) then point out that the total

Power output of a limiter in a given zone is constant; i.e.,

S, t No =L =S"+N' (3.6)
where
So and N0 = limiter output signal and noise power
S' and N' = Timiter output éigna] and noise power for which
V the loop is designed
L = total power output in a given zone (= constant)

Let A designate the carrier amplitude at the output of the PLL,

then A is related simply to S by

A =5 © (3.7)

The detailed theory of a PLL when preceded by a BPL may be found in
Jaffe and Rechtin (1955) or Lindsey and Simon (1973).
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Combining (3.5), (3.6), and (3.7) yields

A = [/—L 3.8
VT -

Because (S/N)i < 0.1 during ordinary operation of our receiver,

(3.8) can be approximated, within error of 4%, by

N VER < B, (3.9

In words, A  is proportional to the square root of the input SNR
(over the IF noise bandwidth of 45 kHz).

After being filtered by a 10 Hz Tow-pass filter, Ao of each
channel is fed into the sample-and-hold circuit to yield the
Format D output. If the variation of (S/N)i is slower than 10 Hz
(which is thought to be true except when the interplanetary scintilla-
tions are very strong), A, will not be changed appreciably after
Passage through the low-pass.filter. The sample-and-hold circuit sam-
ples alternately the two input signals and holds the value until the
next sample comes in. The "hold" function is necessary, because it
provides the subsequent A/D (analog-to-digital) converter of the
Spacecraft telemetry subsystem (Sec. III.E) with time to convert
every sampled value into a 7-bit telemetry word, the first six bits
-being the information bits and the last bit being the parity-check
bit.

Through a word rate pulse generated by the spacecraft telemetry
subsystem, the sampling of the sample-and-hold circuit is synchronized

with the subsequent A/D conversion. Although the A/D converter, by
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ground command, could operate at any one of the five conversion speeds
[8, 16, 64, 256, and 512 bps (bits per second)], the highest speed
(512 bps), together with the sampling rate of 512/7 samples/sec, had
invariably been selected for operation throughout all of our scintil-
lation observations. Note that 512/7 samples/sec are composed of
data coming alternately from 49.8 and 423.3 MHz channels; therefore,
the sampling rate for either channel is only one half, or 256/7

(~ 36.57) samples/sec. According to the sampling theorem, sampling
at 36.57 samples/sec allows the sampled data to contain components

of frequencies as high as 36.57/2 = 18 Hz. This is more than enough
to contain the 10 Hz bandwidth of the pre-sampling low-pass filter
(Fig. 3.5).

Insofar as the format D output is concerned, there is one other
part of the receiver that remains to be introduced. The sun pulse,
energized whenever the sun sensor of the spacecraft (Fig. 3.3) points
to the sun, occurs once per spacecraft revolution (= 1 rps). With
the 512 bps state on, it causes the Format D output to drop to the
base 1ine for 30 ms.+ As the spacecraft spins, this squashing there-
fore marks on the Format D output all the instants when the sun sensor
turns to the sun.

Unlike sampling, the occurrence of the sun pulse is not control]éd
by any timing signal from the spacecraft telemetry subsystem; it depends
only on the orientation of the spinning spacecraft as described in the
. preceding paragraph. According]j, the squashing of the Format D output

takes place asynchronously with the subsequent A/D conversion. A discus-

¥ At 512/7 samples/sec, 30 ms is slightly longer than the duration of
2 samples.
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sion about the digital errors resulted from this asynchronism is given

in Appendix C.

E. Spacecraft Telemetry and Transmission Subsystems

The generation of timing signals, the A/D conversion, the data
storage, and the convolutional encoding are accomplished by the space-
craft telemetry subsystem. As diagramed in Fig. 3.6, it consists
mainly of three units: (1) the digital telemetry unit (DTU), (2) the
data storage unit (DSU), and (3) the convolutional code unit (ccu).

The DTU A/D converter transforms every Format D output (a sampled
analog signa1+) from the Stanford receiver into a 6-bit binary number
(a sampled digital signal). According to binary arithmetic, a 6-bit

binary number, say b b2b3b4b5b6, represents a decimal number N

1
given by

5

N = byx2® + b 4

x2* + box23

X2 + b 2 1

4x2 + b5x2

+ b6x20 (3.10)

2 3

with each b having the value 0 or 1; for instance,

BINARY DECIMAL

000000 0

000001 1

000010 2 ]
000100 4

001000 8

010000 16

100000 32

11 63

T An analog signal (continuous or sampled) is a signal whose amplitude
is allowed to have any value in a given range, whereas a digital
signal is a signal whose amplitude is restricted to a given set of
values.
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and so on. Because N is always an integer from 0 to 63, the‘amplitude
of each format D output is effectively quantized into one of the 64
discrete levels. For convenience, these 6-bit binary numbers or their
decimal values are called the digital code of Format D data, which,
being nothing but the digital forms of the Format D outputs, are also
functions of the input SNR (Sec. III.D). Calibrations for the Format D
data will be discussed in the next section.

By calculating the modu]o;z+ sum of the first, the third, and the
fifth bits of the inflowing 6-bit binary number, the parity bit generator
appends an odd parity-check bit for error detection.* The 7-bit code
words thus generated, called telemetry words, are then stored in the
DSU until the DSU is full.

The DSU has a capacity of 15,232 bits, which in terms of telemetry
words are 15,232/7 = 2,176 words. At bit rate of 512 bps, it takes only
15,232/512 = 30 seconds to fill up this memory unit. Once the unit is
full, readout or clearance of all the stored data by ground command is
necessary before another storage cycle may begin. Owing to this instru-

mental limitation, each set of our Format D data (i.e., the data stored

In modulo-2 arithmetic, 0 ® 0=0, 0 ® 1=1 ® 0 = 1, and
1 & 1=0.

-t

Mathematically,
b] ® b3 ® b5 ® b7 =] (3.11)
where
b], b3, and b5 = the.firgt, the third, and the fifth bits of the
6-bit binary number
b, = the seventh, or the parity-check bit added by the

parity bit generator
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over one storage cycle) and hence each of our IPS observations cannot
span a duration longer than 30 seconds at bit rate 512 bps.

In order to achieve bit error rate’ < 1075

(which will be used as
the criterion for good data by the ground telemetry-receiving system), a
lower bit rate, such as 256, 64, 16, or 8 bps depending on the distance
of the spacecraft from the earth, may be selected for memory readout and
the subsequent data transmission. Without the interim storage provided
by the DSU, the telemetry data would have to be transmitted in real time
at 512 bps (the bit rate at which the Format D output is sampled), which,
when the spacecraft is far (say 0.5 A.U.) from the earth, can bring about
an unbearable bit error rate (i.e., a bit error rate >> 10'3).

After being biphase-modulated by the telemetry words read out of
the DSU, a 2048 Hz square wave is convolutionally encoded by the CCU
(with aAcode rate of 1/2 information bit per code symbol) and is then
fed to the spacecraft transmission subsystem. The primary functions of
the spacecraft transmission subsystem are best understood by examining

its simplified block diagram in the lower part of Fig. 3.6:

(1) The phase modulator accepts the output of the CCU--a con-
volutionally encoded biphase signal--as the subcarrier
to phase-modulate a 114.6 MHz carrier furnished by a
crystal-controlled oscillator on board the spacecraft.

(2) The frequency multiplier increases the frequency of the
114.6 MHz phase-modulated carrier by a factor of 20 so
as to produce at its output a 2,292 MHz telemetry signal.

(3) The TWT (travelling-wave tube) amplifier raises the
power of the 2,292 MHz telemetry signal from 40 milliwatts
to 7.7 watts.

Bit error rate is the average rate or the probability at which bit
errors are delivered to the receiver output; for example, bit error
rate = 10-3 means one bit (on the average) being mistaken in 1000
bits deiivered. It is aiso a common figure of merit for a digital
communication system.
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(4) Finally, via the telemetry antenna (which has an axially
symmetrical power pattern with respect to the spacecraft
spin axis), the émp]ified telemetry signal at 2,292 MHz
(~ 2.3 GHz) is radiated back to the earth.

On earth, the worldwide Deep Space Network (DSN) managed by the Jet
Propulsion Laboratory (JPL) performs the telemetry acquisition, the car-
rier- and subcarrier-demodulation, and the sequential decoding of the
convolutionally eqpoded data. Recorded on magnetic tapes, the decoded
daia (which should be a replica of the telemetry words at the output
of the spacecraft DTU) are mailed to Ames Research Center (ARC), National
Aeronautics and Space Administration, where these data are further pro-
cessed into digital magnetic tapes, containing the extracted Format D

data, to be shipped to Stanford for the IPS studies.

F. Format D Data Calibration

As pointed out previously iﬁ Sec. III.D, the Stanford receiver
was originally designed for interplanetary electron content measure-
ments, not for scintillation studies. Consequently, the Format D
data, orig%nal]y produced just to monitor the performance of the
Stanford receiver, were well calibrated (prior to launch) only at
high input signal-to-noise ratios, not at low input signal-to-noise
ratios.

To attain finer calibration at low input signal-to-noise ratios
and to test the aging (if there is any) of the receiver system, the
in-flight calibration of the Format D data were carried out dﬁring the
return of Pioneer 9 to the vicinity of the earth in 1973 (Fig. 3.1).
Using pre-Tlaunch calibration curve at high input signal-to-noise
ratios as the baseline, the procedure consists mainly of (1) varying

the input signal-to-noise ratio to the receiver by shifting the ground
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transmitter power from one level to another, (2) observing the resultant
change in the digital code of Format D data, and (3) adapting the pre-
launch calibration curves to the observations. The final calibration
curves thus established are shown in Fig. 3.7, where the digital code
of Format D data is plotted versus the input signal-to-noise power ratio
(S/N)i in dB [recall that the Format D data is a function of (S/N)i
(Sec. II1.D)] for each of the two receiver channels.

Obviously, these calibration curves can provide only a mapping from
the Format D data to (S/N)i; input signal power Si’ required for the
IPS studies, may further be inferred from (S/N)i if and only if the

input noise power Ni is known:

s, = (ﬁo X N, (3.12)

Expressed in terms of the total received noise temperature T in

°K, Ni in watts is

=
1]

kBT (3.13)

23

1.3805 x 10 j/°K

equivalent noise bandwidth as seen by the limiter of
the receiver = 45 kHz

where k = Boltzman's constant

Incorporating (3.13) into (3.12) yields

S;= KB () T=6.21x1077 (3) T watts (3.14)
j i :

Therefore, as evident in this equation, in order to infer Si from
(S/N)i’ it has become necessary to compute T, the total received
noise temperature. The calculation of T is the topic of the next

section.
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G. Total Received Noise Temperature

For the receiver and the frequencies (49.8 and 423.3 MHz) of

concern, the total received noise temperature T in °K is given by

, (L~ DT+ T+ T

3.15
1 (3.15)

T=T,

where
T. = receiver noise temperature, °K

&= loss or attenuation of the cable connecting the
receiving antenna terminals to the receiver
[£272=].047 and i27/= 1.514, where superscripts
2 and # will from now on be used freely along
with symbols to indicate Tow-frequency (49.8 MHz)
and high-frequency (423.3 MHz) channels, respectively.]

T. = cable temperature, °K
T_ = received cosmic noise temperature, °K

T_ = received solar noise temperature, °K

where TC and TS refer to the receiving antenna terminals. In the
following paragraphs, each of these four temperatures is discussed
separately. Before getting too involved, it should be remarked that
while Tr and Ta are essentially constant within a given set of
Format D data of ~ 30 seconds, Tc and TS are functions of the

spinning (receiving) antenna pattern and hence are functions of the

spacecraft spin rate and time.

(1) Receiver Noise Temperature Tr

According to pre-launch experimental data, Trg = 300°K and
Tr =178°K, irrespective of surrounding temperature variations over

a wide range of interest.
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(2) Cable Noise Temperature Ta

A11 of the 49.8 MHz cable and about half of the 423.3 MHz cable
are inside the spacecraft equipment compartment. A thermal control
subsystem provides én environment between 30° and 90°F for all scien-
tific instruments mounted within the compartment. Temperatures for
cables and antennas external to the spacecraft are also maintained
in a similar range via passive thermal coatings having the required
absorptivity and emissivity characteristics. Because Ta is primar-
ily constant within a given set of Format D data, its accuracy has
only secondary effects on the final result insofar as normalized
intensity fluctuations (i.e., intensity fluctuations divided by the
mean intensity) are concerned. Consequently, it is assumed, through-

out the analysis, that the cable noise temperatures may be approximated

as
L _ A, o
Ta = Ta 300°K (3.16)
(3) Cosmic Noise Temperature Te

L
Conceptually, Tc and Tc‘

can be easily obtained by convolving
the receiving antenna patterns with the radio sky maps at 49.8 and 423.3
MHz, respectively. Thus, as the spacecraft (hence antenna patterns)
spins with period ~1 second, Tc2 and Tc" will also have the saﬁe
period. The detailed procedure of the computation of Tc2 and Té‘
is presented in Appendix D and will not be pursued here. According

to Eqs. (D.5) and (D.6),

P
A

5440°K < T 5920°K (3.17)
and

37°K

ST
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(4) Solar Noise Temperature Ts

Briefly speaking, the received solar noise temperature TS can
be derived by convolving the reéeiving antenna patterns with the
apparent solar disk temperature observed at the spacecraft. Appendix

E gives the detailed computational procedure. According to Eqs. (E.4)

and (E.5),
L °
T = 20°K (3.19)
and
rs'{ = 10°K (3.20)

Both are much smaller than other received noise temperatures and hence

are less important.

H. Interplanetary Electron Content Measurement

The principle of the interplanetary electron content measurement
is based upon the effect that electrons have on the phase velocity and
the group velocity of a radio wave. Consider a radio wave of frequehcy
v Hz propagating through the interplanetary plasma medium. If the
magnetic field and electron collisions of the medium are neg]ected,-r

the index of refraction is given by

L=l - _.__40-3 N (3.21)
where "N = electron density of the medium, m3

¥ At frequencies of interest (49.8 and 423.3 MHz), this neglect can
be easily justified for regions more than 0.1 A.U. away from the
sun, where electron density N < 7 x 10-7 el/m.  Even for the
worst case in which v = 49.8 MHz and N = 1012 el/m3 in the
ionosphere, Koehler (1967) demonstrates that (3.34) is still a
fairly good approximation.
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The phase velocity Vp (i.e., the velocity one must travel to keep the
instantaneous phase of the.radio wave constant) and the group velocity

vg [i.e., the velocity of the signal (or the modulation envelope) con-
veyed by the radio wave if dispersion over the frequency band of the

signal is small] of the radio wave are then given by

)

=0 - C. 40.3 N
Vp =k oc (1 + 203 ) (3.22)
AV
N ( 40.3 N)
V. = = =¢ (1 - E3N (3.23)
K d 2
g d(uk) L+ dvE B

where w = 2mv, k = 2m/X, X =c/v, and ¢ is the velocity of light

in free space. Therefore, compared with c, the phase velocity is
increased by a factor of (1 + 40.3 N/vz) whereas the group velocity

is decreased by a factor of (1 - 40.3 N/vz). Integrating c¢/vV_ and

p
c/Vg from the transmitter at z = zt to the receiver at 2z = Z,.
yields the total phase path Pp and the total group path Pg,
respectively:
- 40.3
Pp = (zr - Zt) - VZ I m (3.24)
- _ 40.3
Pg = (Zr‘ Zt) + —\)2 I m (3.25)
where
z
r 2
I sf Ndz el/m (3.26)
¢

is the integrated electron content between the transmitter and the
receiver. In principle, the group path Pg can be determined from

T, the propagation time of a short pulse at frequency v, via
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Pg = (T (3.27)

whereas the phase path P_ can be found only within an unknown additive

p
factor of niA, n being an integer. By sending two radio waves at fre-

quencies v and v + Vi (vm << v) and with proper choice of Vm?
this unknown additive factor nXA may be resolved to bring about a
determination of Pp. At any rate, even though P_ or P_ can be

9 p
measured with great accuracy, it is still difficult to deduce 1

accurately from Pg of Pp [see (3.24) and (3.25)] in the absence

of precise information on the physical path length Z, -2 .
To circumvent such a difficulty, two coherent carriers of frequen-
cies vg = 49.8 MHz and v4’= 423.3 MHz are phase-modulated at either
(vm)] = 7.692 kHz or (vm)2 = 8.692 kHz and transmitted from Stanford
to the dual-frequency, phase-locked loop (PLL) receiver (Fig. 3.5)
aboard the Pioneer 9 spacecraft. As stated in Sec. III.D, the PLL is
basically a feedback demodulator capable of detecting and tracking the
carrier phase and the modulation phase of a narrow-band signal in the
presence of wide-band noise. Through this capability, the modulation
phase comparator in Fig. 3.5 measures A¢m, the relative phase of the
two modulation envelopes. Note that A¢h in degrees is related to the
2 £

group-path difference APg = Pg - Pg by

Ad Ad
I P IS
*Pq = 360° 'n ~ 360° 3 (3.28)

Furthermore, from the definition of APg and (3.25),

T The physical path length Zp - Zt, which is of order 1011 m, is
not known to the order of wavelength (few meters).
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1 1
AP = 40.3 - I (3.29)
9 . [(v“)2 (v‘)zJ

Incorporating (3.28) into (3.29) and solving for I produces

- 19
= L ] €, - 5.20 x 10
I'= %3 30° [ S ] o M R e, (3.30)
(vlgz- (v4§2

a relation which can be used to convert the A¢m measurement to the
integrated electron content I. The use of the modulation frequency
Vp = (Vm)] = 7.692 kHz at one time and v = (vm)2 = 8.692 kHz at
another allows cyclic uncertainties of A¢m measurements up to 8

cycles of 8.692 to be resolved, yielding
I=1.7x 109 et/m? (3.31)

as the maximum unambiguous measurement of I. Before being telemetered
back to earth, each A¢m measurement--1like Format D output--is con- .
verted into 6 information bits. This encoding process gives rise to
quantization steps of about 3° (i.e., approximately 64 quantization
levels over 180°), thus resulting in an accuracy of about *2 x 10]6
el/m® for the measurement of 1.

The PLL design provides great sensitivity for the receiver and
hence makes the measurement of the phase-path difference APp, in

addition to APg (or A¢m), possible at very low signal levels.

According to (3.24),

Solving for 1 and inserting V' = 49.8 MHz and L7 = 4233 M4z leads

to
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I =6.28 x 103 (~6p ) (3.33)
which, in terms of the number n of AR, becomes

3 ( 14 n

I=-6.24 x 10° (\) = -3.76 x 10 (3.34)

In actual operation, APp is not directly measured; instéad, the accu-
mulated value of 2n from a certain starting time up to each sampling

instance is counted, thereby producing a measure of the rate of change

of I.

| The count of the accumulated value of 2n 1is accomplished by (1)

generating in the receiver a sinusoidal signal of frequency Av

Av = |v .2 £

v )+
r 17 r

(3.35

2

where Vp and vrA' are the frequencies of the received carriers, and

(2) measuring the zero crossings of this signal in a 10 bit binary

10, 1024 because of the 10-

counter. This count is always modulo 2
bit length of the counter. Without being reset to "all zeros," the
contents of the counter (10 bits) are sampled, divided into two
telemetry words*, and telemetered back to earth.

The rate of change of I thus obtained is then integrated to
yield a plot of I, within an unknown additive constant, versus time.

The unknown additive constant can be determined by comparing this plot

with the electron content curve derived from the APg measurement.

T In words, Av is the normalized (with respect to 49.8 MHz) frequency
difference between the two received carriers, or between the two
arriving carriers at the spacecraft when both PLLs are locked.

* Recall that each telemetry word may contain only 6 information bits
(Sec. III.E).
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Because the minimum measurable increment of the phase-path is one
wavelength of 49.8 MHz, the APp measurement provides a resolution

14 el/m2 for I, which is about 50 times finer

of about 3.76 x 10
- than that provided by the APg measurement.

When the propagation path from Stanford to the spacecraft is far
away from the sun, the intermediate ionosphere and magnetosphere con-
tribute a considerable percentage of the measured total content. To
obtain the interplanetary content, the sum of the ionospheric and mag-
etospheric contents, acquired by monitoring at Stanford the Faraday
rotation of signals from the geostationary Applied Technology Satellite
(ATS), is subtracted from the total content. Imperfect subtraction,
however, is always inevitable because (1) the ionospheric and magneto-
spheric contents thus acquired are along the line-of-sight from
Stanford to the ATS, (2) the actual ionospheric and magnetospheric
contents contributing to the total content are along the line-of-sight
from Stanford to the Pioneer 9 spacecraft, and (3) these two lines-of-
sight may not always be in the same direction. To reduce errors intro-
duced by this imperfect subtraction, two computer algorithms have been
developed for predicting, from the measured contents between Stanford
and the ATS, the contents along the desired line-of-sight. For a
full discussion of these two algorithms, see Croft (1971).

When the received signal strength at the spacecraft is weak, the
Av  cycle counter-may become unlocked, and the operation of the A¢m
phase meter may be degraded, thereby necessitating great prudence and
- special procedures in processing the APp and APg measurements. Fur-

ther details on this and other topics in connection with the interplane-
tary electron content measurement can be found in Landt and Croft (1970),

Croft (1971, 1973), Eshleman et al. (1960), and Koehler (1967, 1968).

63




Chapter IV
DATA REDUCTION

The primary objectives of the data reduction that will be described
are (1) to extract the "clean IPS data" from the received Format D data
and then (2) to compute, based on the clean IPS data, statistical
parameters--such as the autocorrelation function, the power spectrum,
and the scintillation index--for comparison with the theory discussed
in Chapter II. Here, the "clean IPS data" is referred to as the power
(or intensity*) of the signal arriving at the spacecraft after its
transit through the turbulent interplanetary medium.

To give an overall view of what is ahead in this chapter, the
flow chart of Fig. 4.1 depicts the basic procedure of the data reduction.
The first step, the wild-point editing, can be regarded as a preprocess-
ing step, in which errors of Format D data, ensuing from asynchronism of
- the sun pulse with the A/D conversion (see Sec. III.D and Appendix C),
are eliminated by chgcking the two neighboring samples of each sun pulse
and deleting (1) the sample before the sun pulse if its value is even
and (2) the sample after the sun pulse if its value is 3, 7, 15, or 31.
The second step, the data clean-up, which will be discussed in Sec. IV.A,
fulfils the extraction of the clean IPS data from the received Format D
data. To reduce the computational time required, the so-called fast
Fourier transform (FFT) algorithm is applied in Sec. IV.B to obtain
autocorrelation functions. For the same reason, FFT is agaih employed
in Sec. IV.C, in which power spectra are estimated according to proce-

dures given by Blackman and Tukey (1958). Sec. IV.D outlines the lTogic

t Recall that the terms “"power" and "intensity" are used interchange-
abiy--see p. 17 in Chapter II.
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Fig. 4.1. FLOW CHART OF DATA REDUCTION.
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of a computer program devised for (1) fitting three proposed forms+
to the estimated power spectra in least-square sense and then (2)
determining which form ffts best by comparing the fitting parameters.
Finally, in Sec. IV.E, the calculation procedure and the correction
factors of scintillation indices?-founded on a simplified noise model

which can be justified by in-flight calibration data--are presented.

A. Data Clean-Up

From the descriptions in the previous chapter, a typical set of
Format D data consists of a total of 2,176 digital sampfes (which
span a duration of about 30 seconds ). coming alternatively from 49.8
and 423.3 MHz channels at a rate of 512/7 =~ 73.14 samples/sec. Rep-
resented as functions of sampling instants, these samples appear like

the following:

01(0), o), v%21), p%(31), . . .., Dﬂzmr), p%(21751) (4.1)
where Tl = 0.0137 sec | (4.2)

_ —
is the sampling interval if samples from both channels are counted

and, again, superscripts 2 and 4 are used to indicate 49.8 and
423.3 MHz channels, respectively. (2 and £ were defined on p. 56.)
Except when sun pulses occur, each D(kt) (where k =0, 1, 2, . . .,
2175) has a value between 5 and 63, which can be converted to

Si(kT)/Ni(kT), the input signal-to-noise power ratio at kt, by

T The three proposed forms of power spectra of intensity fluctuations
are gaussian, exponential, and power-law.

* If only samples from either channel are counted, the sampling interval

is 2T =~ 0.0273 sec, which corresponds to a sampling rate of 256/7 =
36.57 samples/sec.
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employing the calibration curve in Fig. 3.6. Because I(kt), the
clean IPS data (or the arriving signal intensity at the spacecraft)

at kr, is related to S,(kr) via
Si(kr) = A(kt) x I(kt) (4.3)

where A(kt) 1is the receiving antenna power pattern in the direction
of the earth at krt, Si(kr)/Ni(kr) can further be used to extract
I(kt) if both A(kt) and Ni(kr) are known:

Si(kT) Ni(kT)
I(kt) = [Ni(ij] X R(KT) B (4.4)

In order to infer A(kt) and N,(kt) from A(y;) (Fig. 3.4)
and Ni(wy’ws)+’ it is necessary--as will become clearer later--
to first find the spacecraft spin period, say T,» and the instants,
say mt, mt+ T, mr+ Zro, . . .5 at which the sun sensor of
the spacecraft turns to the sun. A clue to the determination of

T, and mt may be obtained by recalling from Sec. III.D that

sun pulses [each appearing as two successive 1's in (4.1)]

T According to (3.13) and (3.15), Ni is made up of four noise temp-
eratures

19 b}.+(5311) T, +T o+ TS]

<
While Tr ahd Ta are essentially constant within a given set of
Format D data, vy and y_ and hence T, = TC(wY) and Tg = T (¥)
[see Egs. (D.3), (D.4), (E.1), and (E.2)] are, as mentioned in Sec. III.
G, periodic functions of time with period equal to that of space-
craft rotation (~ 1 sec). Therefore, Ni may in turn be regarded
as a function of wY and ws, or, symbolically,

Ni = 6.21 x 10

N, = N(w s w.)
Y 5
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mark on the Format D data all the times when the sun sensor points

to the sun. Intuitively, one could adopt sun pulses along the data
directly as divisions of spacecraft rotations and then count (1) the
separation between sun pulses and (2) the position of the first sun
pulse to yield (1) T, and (2) mt, respectively; however, due to
the discrete nature of the data, T, and mt thus determined will be
of uncertainty +t. To improve the accuracy, the following proce- -
dure is utilized in actual data reduction to determine T, and mrt
for each set (or pass) of Format D data:

1. Count the separations between sun pulses throughout a given
set of Format D data and refer to other available informa-
tion” to give a rough estimate of T,> Say ?o.

2. Superimpose the whole given set of data (which usually con-
tains data of about 30 spacecraft rotations) at a period

equal to T .

3. Check and see if every sun pulse is within a narrow opening

of width = 21. If not, change the period of superimposi-
tion T, until they are.

4. Record the final period of superimposition and the corre-
sponding position at which the narrow opening starts to
be t, and mr, respectively.

Fig. 4.2 illustrates the values of spin period T, in seconds thus
derived versus the dates of taking Format D data from late 1968 to 1972;
the sinusoidal variations of T, can be attributed, as mentioned in

Sec. III.C, to the heating and cooling of the spacecraft--when the

spacecraft moves closer to or farther from the sun (Fig. 3.1).

¥ For example, +t,'s which had already been found for previous Format D
passes are useful pieces of information, for, as will be seen later,
the values of T, have a certain trend (Fig. 4.2).
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Once T, and mrt are known for a given set of Format D data, one
can write Vg wY, and Ve at kt as functions of kt by referring

to Figs. 3.2 and D.1:

b (kt) = @E x 360° | (4.5)
0

wY(kT) = wS(kT) + 360° - G-S (4.6)

wE(kr) = ws(kr) + 360° - P (4.7)

where (1) Vg wY’ and Y are the ¢ angles.of the sun, the vernal
equinox, and the earth, respectively, and (2) G 1is the celestial lon-
gitude of the sun observed from the earth, whose daily values are

tabulated in The American Ephemeris and Nautical Almanac.

With the aid of the above three equations, A(wE) and Ni(wY,wS)

can be converted to A(kt) and Ni(kr) which can further be incorpo-

‘rated into (4.4) to yield the clean IPS data I(kt).

A1l received Format D data are processed by a computer program that
fulfills the data clean-up by virtue of the procedure just described,
and all I(kr) thus acquired are available in the forms of listing,
plots, and cards such that they can be visually inspected or further
processed by computers. Several examples of I(kt) plotfed in dBm
versus time are shown in Figs. 4.3 through 4.6. A complete set of
figures and listings of I(kt) versus time for all of our scintilla-
tion data may be found in Croft et al. (1975a) and Croft et al. (1975b).
Figs. 4.3 (a) and (b) illustrate I(kt) at 49.8 and 423.3 MHz taken
simultaneously on 9 February 1969, ninety days after launch, when the
spacecraft was still near the earth and IPS was slight. The siow varia-
tion of I(kt) in Fig. 4.3(a), which has period = 10 seconds, is

believed to be due to ionospheric scintillations.
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period ~10 seconds are believed to be due to ionospheric scintilla-
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Fig. 4.3. SCINTILLATION RECORDS ON 9 FEB 1969 WHEN THE PROXIMATE DIS-
TANCE p OF THE RADIO PATH WAS 0.85 A.U. FROM THE SUN AND THE SPACE-
CRAFT WAS NEAR THE EARTH.
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b. Almost no IPS at 423.3 MHz.

Fig. 4.3. CONTINUED.

73




I0 APR [970, 0.41 A.U.

49.8 MHz

-130

* F oLt

* ++F + B
+ *T+ +4f +

i: s ;_“f{f: T *1-* %{‘;‘r 14};*-'- +f+3:

-140 + ty = *‘_f’:p— L *r t M-S Y Rl
+ &+ +
0 le——s| 3 6

ONE SPACECRAFT
ROTATION (= sec)

* 5
-|30 A o
+ * +
Lr'f‘f* s N TR S RO
+ H% F4 [+ #..t
- N o + + ++ + +
e -140 T +.+*f+ T
(ea) > + *
© 6 9 12
-
N
5 =130 + .
+ . F+ | £ Fag
+ 4+ ,gtH_ +F *ﬁ#t + £,
= -{40— fi}* }'* **;':1!- ¥ 25 b S N
a T A e
w b
=S} 15 18
S
&
-130 T
- ¥ ¥
+ o "'ﬁ-""%+ N PN,
b w1l i i A N BV
-I4O * F+ =+ + - M... * +:++Af» ++
+
#ﬂr g "HH.# * :4- t-'o.-# +++
18 21 24
-130 o
+ + r&vﬁ!ﬁr 3 'f:*- ﬂ-#
+ +
- P — + .
I4Or:' + tyt Tt + * + ++ +
t e+ o+ +
24 27 30

Fig. 4.4.

TIME, SPACECRAFT ROTATIONS

a.

Strong IPS at 49.8 MHz.
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b. Moderate IPS at 423.3 MHz.
Fig. 4.4., CONTINUED.
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5. CONTINUED.
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20 SEP 1972, 0.88 A.U.
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a. Weak IPS at 49.8 MHz.

Fig. 4.6. SCINTILLATION RECORD ON 20 SEP 1972 WHEN p = 0.88 A.U. AND
SPACECRAFT WAS BACK NEAR THE EARTH.
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b. Weak IPS at 423.3 MHz.
Fig. 4.6. CONTINUED.
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The reason for this belief can be understood as follows. According
to the thin-screen diffraction model [as was adopted by Rufenach (1971,
1972, 1973, 1975) and Singleton (1974) to interpret ionospheric scintil-
lations], the dominant component of intensity fluctuations is at the
Fresnel frequency v. = U//mz. Since the height z of ionospheric
irregularities occurs in a narrow range 300-400 km [Rufenach (1971)] and
the velocity U of ionospheric irregularities is on the order 70-160
m/sec [Singleton (1974)], the dominant period (= I/vf) of ionospheric
scintillations at 49.8 MHz is of the order 10-50 sec. [See also Briggs
(1966)], who has pointed out that ionospheric scintillations are in the
range 10 to 60 sec.] Fig. 4.4 displays I(kt) taken on 16 October 1969
when the proximate distance p of the propagation path was 0.82 A.U.
from the sun. The quasi-periodic fluctuations of I(kt) of period =
2 seconds, at 49.8 MHz indicate clearly the effect of IPS, because
YAz ~ 500 km and U ~ 500 km/sec such that ve(IPS) ~ 0.5 Hz.  Note
that at the same time I(kt) at 423.3 MHz is still relatively steady.

Fig. 4.5 presents I(kt) taken on 11 November 1970, about one month
before solar occultation, when p = 0.15 A.U. from the sun. The fluc-
tuations at both frequencies are stronger and faster than those shown

in Fig. 4.4. Long after solar occultation (20 September 1972) as the
spacecraft returns to the vicinity of the earth, I(kt) becomes steady

again as illustrated in Fig. 4.6.

B. Autocorrelation Function of Intensity Fluctuation

Consider a finite string of clean IPS data containing N samples

at either 49.8 or 423.3 MHz and appearing as follows:

1(0), I(t'), I(2t"), . . ., I[(N-T)7'] (4.8)

where T8 = 2t = 0.0273 sec (4.9)




is the sampling interval if only samples from either channel are counted.
[ - The autocorrelation function of intensity fluctuation, RAI(mr'), or

equivalently the autocovariance function of the intensity, AI(mT') is

: defined by
‘\ ] N'm-]
| Rypme') = Ap(mt') = = Y. AI(kt') AI(kt' + mt')
T k:o
] N‘m"] - -
== 2, [Ikr') - I1 [I(kt' + mr') - ] (4.10)
k=0
where

Al(kt') = I(kt') - 1 ' (4.11)

is the intensity fluctuation and

] i-

=Z|—

N-1
kz"‘b I(kt') (4.12)

is the temporal average of I(kt').

As suggested by Stockham (1966), an autocorrelation function
can be computed via the indirect route of using FFTs. The method is
based upon the fact that the product of the discrete Fourier transform+
(DFT) of any periodic sequence and its complex conjugate is equal to
the DFT of the circular autocorrelation function of the sequence.
Appendix F details the computational procedure. Examples of the auto-
correlation function of intensity fluctuations thus derived will be
illustrated in the next section along with the power spectrum of

intensity fluctuations.

* See, for example, Brigham (1974) for a comprehensive discussion on DFTs.
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C. Power Spectrum of Intensity Fluctuations

The power spectrum FI(v) of intensity fluctuations is defined as
the Fourier transform of the autocorrelation function RAf(t) of
intensity fluctuations:

[+ 3]

Fiv) = f Ry (t) e IZmt 4 (4.13)

Let ?I(v) denote the estimate of FI(v) using the Blackman-Tukey
method. Appendix G describes the computational procedure of El(v)
in detail. Also included in Appendix G are (1) some general considera-
tions of estimating FI(v) in practica1 situations and (2) discussions
on the stability and confidence limits of power-spectrum estimates.
Figures 4.7a through e illustrate several estimated power spectra
?I(v) of intensity fluctuations along with their inverse Fourier
transforms: the autocorrelation functions RAI(t) of intensity
fluctuations. A complete set of such plots for all of our IPS data |
may be found in Chang et al. (1975). Each spectrum in dB is plotted
versus three distinct scales: log v, v, and vz, thereby facili-
tating one to visually differentiate among the three distinct models:
power law, exponential, and Gaussian, respectively [see (2.52)].
If the spectrum follows the power law (exponential, or Gaussian)
model, then it should appear as a straight line when plotted in dB
versus 1log v (v, or vz). From a visual inspection of all the
spectra, it is the authors' impression that most of the spectra fé]]
into two categories: 1) power law, when scintillations are weak,
moderate, or strong, and 2) exponential, when scintillations are

"very strong."
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On the basis of least-square fitting, a quantitative approach
(which is more objective than the visual inspection) to the dif-
ferentiation among the three models will be presented in the next
section. It is interesting to note first that the result concluded
from such an approach essentially corroborates the impression

acquired by the visual inspection.

D. Linear and Quadratic Regressions of the Estimated Power Spectra

on Three Distinct Scales

1. Determination of the Fitting Regions

As just briefly mentioned, the principal purpose of this section

is to develop a quantitative approach to testing which one of the
three proposed power-spectrum models describes best our estimated
scintillation spectra. The basic idea is fairly simple: Perform
regressions on least-squares fits of each estimated spectrum on
three different scales (namely, logv, v, and v2) and then
decide which fit (and hence which model) is the best by comparing
the fitting parameters. Since each estimated spectrum ﬁl(v) is
always available for v =0 to 18.3 Hz+, one of the major prac-
tical problems in applying this idea is to determine over what
frequency region the regression should be fulfilled. In other
words, what is the "fitting region?" Furthermore, for a given
El(v)’ should this region be different for regressions on differ-

ent scales?

T Recall that 18.3 Hz is the fold-over frequency or the highest

resolvable frequency at the sampling rate 36.6 samples/sec.
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According to the theoretical derivations in Chapter II, the fitting

region should start from the Fresnel frequency

\)f = U/m (4.]4)
where U = solar wind velocity (4.15)
and YAz = radius of the first Fresnel zone (4.16)

>

Even though under the thin-screen approximation, /iz 1is fixed and can
be calculated from the geometry of the experiment, Ve is still unknown
for lack of knowledge of U. A Tower bound on Ve and hence on the
fitting region, A however, may be established by adopting 300 km/
sec [which seems to be a reasonable choice in view of the data presented

by Armstrong and Coles (1972) and Neugebauer (1974)] as the lowest pos-

sible value of U:

= 4.
\)m /T ( 1 7)

For most Format D data, /Xz = 650 km at 49.8 MHz and 200 km at 423.3

MHz, giving rise to the lower bounds on the fitting regions

v’ = 0.26 Hz (4.18)

and

5\ =)

v~ 0.78 Hz (4.19)

respectively.
Turning now to the high-frequency end of the estimated power spec-

trum, an examination of all the available power-spectrum plots reveals

that after a certain frequency, say vy, up to 18.3 Hz, FI(v) usually
fluctuates around a constant level with a spread approximately equal to

iiiiii ~

the 0% confidence 1imits given in Table G.2.

N

The general trend of vy
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looks to be very interesting: The faster or, almost equivalently, the
stronger the scintillations, the larger the value of Yy (which varies
from about 5 Hz for weak scintillations to about 15 Hz for very strong
scintillations). Therefore, Yy may be thought of as the frequency after
which the "signal" (i.e., the intensity fluctuation due purely to IPS) is
of comparable magnitude with the background noise,+ and the region [y,
18.3 Hz) (defined as from vy to 18.3 Hz) may be regarded as the "noise
region." w

Although for a given ?I(v), the beginning frequency vy of the
noise region is often discernible, it cannot be utilized directly as the
end frequency of the fitting region because there sometimes exists a
small, noise-like region [B,y], called the transition region, immediately
before the noise region such that it would be more appropriate to choose
B rather than Yy as the end frequency of the fitting region (see, e.g.,
the bottom figure of Fig. 4.8). The difficulty is that for a given EI(v)
plotted in dB versus v, v2, and log v, the transition region and
hence the value of B 1in Hz appears to be different from one plot to
another (see, e.g., Figs. 4.8 and 4.9). In order to give each plot and
hence each model a fair regression test, it is therefore concluded that
the fitting regions should be picked out separately for regressions on
different scales. -

For simplicity of notation, define

Y =10 10910 FI(v) (4.20)

Xy = 10910 v (4.21)

Possible sources of this background noise include: 1) the instability
of the phase-locked loop receiver when the input signal strength is very
weak, 2) the quantization effect resulting from the A/D conversion in
the spacecraft telemetry system, 3) the residual noise aricing from
imperfect data clean-up, 4) the aliasing effect, 4) the leakage error,

< -~ timans Al s

- ~ S mdnad 2. VT3Id,. AL lhm st cmia moemmomderasioe o de o mm Ao
and 6) the intrinsic variability of the power-spectrum estimate.
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Xp = v (4.22)

-yl '
X3 = v (4.23)
'ﬁb = averaged background noise level (4.24)
= average of FI(v) over the noise region
[v,18.3 Hz]

and let [a],B]], [aZ,Bz], and [a3,83] denote the three fitting regions

to be found for a given Y. Then, any one of these three regions, say

[ai’Bi] (i =1, 2, or 3), may be determined in accordance with the

following steps. To help the reader understand these steps, two prac-

tical examples are shown in Figs. 4.8 and 4.9.

1.

2.

Examine the plot of Y(Xi)’ i.e., Y as a function of Xi'
Estimate [ai,éi].

Fit, in the least-squares sense, a linear function ?(Xi) to
Y(Xi) over the estimated region [&i’si]' This linear func-
tion appears as a straight line in Figures 4.8 and 4.9.

The end of the fitting region, B], is the frequency at which
the height of this straight regression line dips below NB.

The beginning of the fitting region, @, is the Towest
frequency satisfying both of the following requirements:

a) @ >V (Recall that Vp 1S the theoretical lower bound

on the fitting region.)

b) ATl Y(X,)'s between @, and &, Tlie within a belt of
width 25 above and below the regression line, S being
the "standard error of the predicted Y" [Snedecor and

Cochran (1967)]

Testing the Power-Spectrum Forms via Linear and Quadratic

Regressions

Once the three fitting regions [a],B]], [02,82], and [a3,63] of

a given

Y are determined, the next question is to decide how many
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regressions (e.g., linear regression, quadratic regressioh, etc.)+ are
needed for each plot of Y versus Xi such that the resultant regres-
sion parameters can be compared to deduce which of the three models fits
the given Y best.

To find a reasonable answer for the above question, consider the
case when the ith model (let i =1, 2, and 3 correspond to the power-
law, the exponential, and the gaussian models, respectively) describes

the given Y best. Then Y against Xi would appear as the most

linear and the least curved among the three plots (see Seé. II.F). In

addition, it would tend to have the smallest standard (or root-mean-

square) deviation from linear regression when compared with the other
two. Therefofe, the test of power-spectrum forms may be regarded as a
procedure consisting mainly of evaluations and comparisons of three
types of measurements: 1) standard deviation from linear regression,
2) linearity of Y(Xi), and 3) curvature of Y(Xi). In what follows,
each of these three types of measurements will be discussed separately.
Also, for simplicity of notation, X will from now on be used to
represent Xi (where’ i=1, 2, or 3) so long as it does not create

confusion.

First of all, let ?(X) designate the straight line that fits Y(X)
in least-squares sense over the fitting region bounded by X = Xa’ and

X = XB’ where Xa and X, are defined as the values of X [see (4.21)-

B
(4.23)] for frequency v = o and B respectively. Then, like Eq. (4.28),

the standard deviation o from linear regression is given by

o2
o = H:_;L (4.25)

T Theoretically, for a set of N arbitrary points, it is possible to
fit a polynomial of degree N-1 through all these points exactly;
however, for the purpose of distinguishing among the three different

Wahi \ e [ mvammioma b 1., YRR B
models, the coefficients of high-order terms (presumably, N >> i)

would have doubtful significance.
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where n 1is the total number of the (X,Y) points in the fitting
region, and I denotes the summation over the fitting region. Because
o is an estimate of the overall error in fitting a straight line,
smaller values of o correspond to better fits of Y(X) by a straight
line.

Secongiy, the linearity of Y(X) (or of the relationship between
Y and X) is conventionally measured via the linear correlation

coefficient p defined as

0= ==X (4.26)

where x=X-X, y=Y-Y, and X and VY

are the mean values of X and Y. The absolute magnitude of p

ranges from 0, when there is no correlation, to 1, when there

is complete correlation [or equivalently, when Y(X) 1is a straight

line]. The closer the value of le] to 1, the more linear the
relationship between Y and X.

The third type of measurement has to do with measuring the
curvature of Y(X). Since we are interested only in the general
trend, not in the detailed structure, of Y(X), such a trend can be
reasonably sensed by fitting a quadratic function ; of X to Y(X)

in least-squares sense over the fitting region [Xa s XB]:

2

. ¥ = aXx® + bX + ¢ (4.27)

Then, the normalized curvature of V(X) defined by
2 - 2

(X -Xa) . d2Y i 2a(XB-Xa)
( Y(X.)-Y(X )
o) a

(4.28)
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may be considered as a measure of the curvature of Y(X). Note that
the (XB-XQ)Z)[7(XB)-V(§Q] factqr in Eq. (4.28) is just a normaliza-
tion factor to correct the difference of the value of F caused by
differences of the fitting regions.

Founded on the above discussions, the procedure of the regression
test on the power-spectrum forms for a given Y is as follows:

1. Fit, in least squares sense, ?(Xi) (a linear function of
Xi) and Y(Xi) (a quadratic function of Xi) to Y(Xi)
over the fitting region [ai’Bi] for i =1, 2, and 3.

2. Compute, for each i, 1) the standard deviation from linear
regression, Oss 2) the linear correlation coefficient, Pi»

and 3) the normalized curvature of V(Xi), Fi'

3. Perform three tests:

Test No. 1: the il (i =1, 2, or 3) model wins this test
if 0; is the smallest among 0ys Tps and 04

Test No. 2: the i'" model wins this test if [o,| is the
largest (or the closest to 1) among [py], loyls
and |pg|. _

Test No. 3: the 1i'" model wins this test if |F.| is the
"smallest among lF]I, |F2|, and |F3|.

The ith model is claimed to fit a given spectrum best if it

wins two or all of the three tests. Applying these three tests

to a total of 149 spectra, the results indicate that for a

given spectrum if one model is the winner of one test, then

usually this model is also

(1) the winner of the two other tests

°r (2) the winner of one of the two other tests

Case (1) above (viz., one model wins unanimously all three tests

for a given spectrum) happens to 119 (= 80%) of 149 spectra

tested, implying that the three tests, although different, are

consistent for most spectra. Case (2) above happens to 29

(= 19%) of 149 spectra tested. There are only 2 spectra out of

149 tested that could not be described by either Cases (1) or
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(2) (viz., three tests are won by three different models), and
the spectral forms of these two spectra are regarded as indeter-
minable. '

4. For each best fit determined from Step 3 above, record the
height difference A of the linear regression line Y over
the fitting region [Xa,XB]:

A= ?(xa) - ?(xB) dB (4.29)

The physical meaning of A, called the spectrum signal-to-
noise ratio or the maximum ratio of the signal spectrum to
to the noise spectrum, will be discussed in Sec. D.3.

5. Record the slope ¢' of the linear regression line for cases
when the power-law model is the best fit. Note that ?' is
related to p', the estimated value of the true power-law
exponent p, via (Sec. II.D)

p' = ' + 1 (4.30)

To illustrate, Figs. 4.10 and 4.11 show the linear regression lines
and the quadratic regression curves derived from the above procedure
over the fitting regions. Also shown are the values of Ois Pi» and
Fi for i =1, 2, and 3. Finally, as a supplementary point it was
observed that throughout the course of relatively weak interplanetary
scintillations, residual antenna and noise (including solar and cosmic
noise) patterns arising from imperfect data clean-up may occasiona]]y'
become visible in the estimated spectra as a prominent peak arouﬁd 3 Hz.
A good example of these 3-Hz peaks is the one manifested in Fig. 4.7e.
In order to avoid errors in regression tests which might be introduced
by such a spurious peak, a special feature has been added to the
computer program that implements all the regression-test procedures
described in the previous and the present subsections such that this

peak, once identified, can be ignored during both the determination

of the fitting regions and the testing of the power-spectrum forms.
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3. Spectrum Signal-to-Noise Ratio A

This subsection is devoted to develop the concept and definition
of a quantity that will be utilized frequently in the next chapter.
This quantity is called A, the spectrum signal-to-noise ratio or
the maximum ratio of the signal spectrum to the noise spectrum. As
will be seen soon, it is a measure of the reliability of the observed
power spectrum. First of all, recall that all observed spectra are
contaminated by some unwanted noise as evidenced by the existence of
the background noise at their ends (see, for example, Fig. 4.8).
Secondly, recall from Secs. III1.D and III.F that voltage is being
measured and then converted to power by a calibration curve. Define
the signal AI(t) here as the zero-mean intensity fluctuations caused

purely by IPS:

AI(t) = I(t) - T (4.31)
If the background noise N(t) = AN{t) + N is additive with mean N,
then the observed intensity is the sum of I(t) and N(t):
R(t) = I(t) + N(t) = AI(t) + T + AN(t) + N (4.32)
with mean R=T+N (4.33)

Assuming that AI(t) and AN(t) are statistically independent, then

the autocovariance function AR(T) of R(t) is

AR(T) [R(t) - R(t)] [R(t+1) - R{t+T)]

Tar(t) + aN(t)] [al{t+1) + aN(t+7)]

AL(t)AI(t+1) + AI(t)MN(t+t) + AN(t)al(t+T)
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AN(t)AN(t+T)

= A1) + Ay(T) 4 (4.34)
because AN(E) = 0 (4.35)
and AT(t)AN(t+T) = AI(t) - AN(t¥T) = 0 (4.36)
AN(t)AI(t+T) = AN(t) - AI(t+T) = O (4.37)

Fourier transforming both sides of (4.34) leads to
FR(v) = FI(v) + FN(v) (4.38)

Therefore, each observed power spectrum FR(v) is indeed the sum of
(1) the desired power spectrum FI(v) of the signal (or the intensity)
fluctuation caused purely by IPS and (2) the power spectrum FN(v)

of the background noise. Clearly, the larger the noise spectrum

FN(v) compared with the signal spectrum FI(v), the more distorted
the form of the observed spectrum FR(v) from FI(v). To find a
reasonable measure of Such a distortion, we consider the ideal case

when the samples of the noise N(t) at sampling instants t=0, T',

2t', . . . are uhcorrelated.+ Then

- 1
FN(v) = Ny for |v| <5pr = 18.3 Hz (4.39)

and the maximum ratio A of the signal spectrum FI(v) to the noise
spectrum Nb is approximately equal to the height difference of the
linear regression line fitted to Y(X) [= FR(v) in dB] over the fitting

region [Xa, XB}:

pears to be true at least for the quantization

mption a
roduced during A/D conversion,

QT
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Az ?(xa) - Y(x dB (4. 40)

g)
as given earlier in (4.29). Larger values of A correspond to smaller
values of the noise spectrum compared with the signal spectrum, imply-
ing that the observed spectrum is more reliable (or closer to the true
signal spectrum); consequently, A may be thought of as a measure of

the reliability of the observed spectrum.

E. Scintillation Index

From Sec. II.H, the scintillation index m is defined as the

normalized standard deviation of the signal intensity I(t):

7 2 f 7 g
metl o1 N0 L (4.41)
I I I
where
AI(t) = I(t) - T (4.42)

is the zero-mean, intensity fluctuation caused purely by IPS and

o = \J(AI)2 (4.43)

is the standard deviation of I(t). Again, since the observed intensity

R(t) is the sum of I(t) and some unwanted noise N(t):

R(t) = I(t) + N(t) (4.44)

Following the noise model presented in Sec. D.3 and considering

T =0 for (4.34) gives rise to
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op = o;" + 0y (4.45)
Because of the two following reasons:

(1) Both the quantization error and the system instability
increase sharply as I(t)/T decreases. Here, T is
the total received noise temperature given by (3.15)
and is relatively constant in comparison with the sys-
tematic decrease of T when the Pioneer 9 spacecraft
moves away from the earth.

(2) For most of our Format D data, the above two effects
are dominant sources of the additive noise N(t).

it is supposed (and later verified by experimental data) that oNz
is a function of T,
2 - 2,+
o = Oy (1) (4.46)
Dividing (4.45) by TQ and making use of (4.41) yields
ORZ 012 ONZ(T) (8.47)
= + .
I G |
and me = mR2 - ¢(1) (4.48)

where Mo scintillation index of the observed intensity R(t)

2 -
2D
TZ

o)

C(T) = = correction factor for m° = a function of T only

Based upon a large body of Format D data collected during the calibration

experiment, the validity of (4.48) was checked to be quite satisfactory
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especially for the 423.3 MHz channel. The correction factors thus
acquired for the 49.8 and the 423.3 MHz channels are plotted versus
T in Figs. 4.12 and 4.13, respectively.

Observing the calibration curves given in Fig. 3.7 reveals that
Format D data equal to 5 correspond to the lowest detectable (S/N)i's
(input signal-to-noise ratios) for both channels. Stated another way,

when ‘a Format D datum 5 is received, it means that the (S/N) could

i
be any value lower than about -30 dB for the 49.8 MHz channel or could
be any value lower than about -26 dB for the 423.3 MHz channel (Fig.
5.7). Because of this uncertainty, only the upper limit Mau and

the Tower limit Mo ©ON mp are obtainable. The upper and lower
Timits can be derived by setting the input signal-to-noise power ratio
(S/N)i associated with Format D datum 5 equal to its minimum possiple
value (-~ dB for both channels) and its maximum possible value (-30 dB
for the 49.8 MHz channel or -26 dB for the 423.3 MHz channel), respec-
tively. Substituting meu and MeL into (4.48) gives rise.to the

upper limit m, and the lower limit on scintillation index m:
U ™

2 _ 2 T
mU - mRU = C(I) (449)

2 mRL2 - ¢(T) (4.50)

™

With the aid of (4.49), (4.50), and Figs. 4.12 and 4.13, lower and
upper limits on scintillation index have been computed for all available

data and plotted against various physical parameters of interest.
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Chapter V
RESULTS AND INTERPRETATIONS

The results of our interplanetary scintillation experiment derived
from the procedure of data reduction given in Chapter IV will be pre-
sented and interpreted in this chapter. It will be shown that the
observed témporal spectra of intensity fluctuations (and hence the
spatial power spectrum Fn(q) of interplanetary electron-density
fluctuations) cannot be of a gaussian form. In addition to the well-
known weak and strong scattering regimes, our data appear to suggest
that there exists a third scattering regime, called the very strong
scattering regime. While more than 80% of the observed scintillation
spectra in the weak and strong scattering regimes follow a power-1law
variation with mean exponent p = 3.5 + 0.13 and standard deviation
Op = 0.3, the shape of the observed scintillation spectra becomes
exponential in the very strong scattering regime. Details of these
results will be contained in Section A. Several scintillation spectra
on which the Fresnel structure is observable are discussed in Section
B. Section C shows that the apparent scale size of the diffraction
pattern deduced from the width tw of AI(t) (the autocorrelation
function of intensity fluctuations) is compatible with a power-law.
spatial spectrum Fn(q) of electron-density fluctuations. In Section

p']'5 in the weak

D, the scintillation index is found to be «
scattering regime, and the interplanetary electron-density fluctuation
is shown to be « 0'2, where p is the proximate distance of the
propagation path as defined in Sec. III.A. Section E demonstrates

that the scintillation index is directly proportional to the integrated

electron content alon

ong ther, the deviations
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of the scintillation index and the electron content from their means

are seen to be strongly correlated.

A. Spatial Power Spectrum Fn(q)

1. Form of Fn(q)

Thé form of the spatial power spectrum Fn(q) of interplanetary
electron-density fluctuations has been a long-standing, controversial,
and vital question in interplanetary scintillation theory: Is it
gaussian, exponential, or power-law? [See, for instance, Hewish (1971),
Cronyn (1972c), and Matheson and Little (1971) for summaries of the
argument.] It is a vital question because both the prediction énd the
interpretation of the interplanetary scintillation phenomenon depend
completely on the form of Fn(q).+ To find out which of the three
forms describes our observed spectra best, a regression test on the
basis of least-squares fitting was described in Sec. IV.D. The results
of this regression test are summarized in Table 5.1. Recall from Sec.
IV.D.2 that of 149 spectra tested, only 2 (= 1%) are not determinable.
A11 147 determinable spectra have A > 0 dB and are included in Case 1
in this table. Cases 2, 3, 4, and 5 include only determinable spectra
that have A 3_5; 10, 15 and 20 dB, and the total number of spectra
included are ‘138, 96, 76, and 47, respectively.

As mentioned in Sec. IV.D.3, A of a given observed spectrum is

a measure of its reliability; therefore, one would expect that individ-

T For example, according to the gaussian model in the weak scattering
regime, the width r, of the autocorrelation function of intensity
fluctuations is equal to the "intrinsic scale size" of interplanetary
electron density fluctuations, whereas according to the power-law
model, r, is merely a parameter related to the first Fresnel zone
of the diffraction geometry and does not reflect a genuine scale in
the IPM. ([See Hewish (1972) and Sec. II.G.]
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ual results in Case 5 are more reliable than those in any other four

cases. The three columns under the title "percentage" give the per-

centage at which each of the three models best fits the observed

spectra; for instance, in Case 1, 15% (8 out of 54) of the observed

spectra at 50 MHz over p < 0.35 A.U. can be fitted best by a power- -
law model.

It can be seen from these three columns that the power-law model
best describes from 88 up to 100% of all the observed spectra at 423

MHz, and more than 82% of all the observed spectra at 50 MHz over
| o > 0.35 A.U. If considering only all spectra that have A 3_20.dB
- (Case 5), then 12 out of 17 spectra (= 71%) observed at 50 MHz and
all 30 (100%) spectra observed at 423 MHz can be explained by a power-
Taw Fn(q).

The gaussian model is rejected based upon the percentage results
shown in thfs table. In cases of very strong scintillations the
exponential model appears to fit best our observed spectra. During |
an effort to account'for the occurrence of these exponential spectra,
three suggestions have emerged:

1. Due to the instrumental noise effects in the very strong
scattering regime (50 MHz, o < 0.35 A.U.), the received
signal strength is normally so weak and fluctuates so
rapidly that the 50 MHz receiver is pushed to or beyond
its accuracy limit. Insufficient sampling rate, heavy
quantization noise, severe instability of the receiver,
and the resultant aliasing errors may distort greatly
the observed scintillation spectra.

2. Due to the genuine change of the turbulence spectrum
form from power-law to exponential around o = 0.35 A.U.

3. Owing to the very strong wave scattering phenomenon
1 h

5 R P |
itself, ¢t i0 3ignai

(1]

o
» the form of the spectrum of the rad
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may be affected in a manner (not presently understood)
which is not necessarily an indication that the form
of the turbulence spectrum underwent a similar change.

If suggestion (1) were correct, then one would expect the scintil-
lation spectra to be distorted systematically into an exponential form
as the spectrum signal-to-noise ratio A decreases. As a consequence,
one would expect the percentage of the exponential spectrum to decrease
monotonically from Case 1 to Case 5 because the instrumental noise
effects become less important for spectra having larger values of A.
The percentage results in Table 5.1 indicate almost the opposite:

Case 1 has the lowest percentage (67%) of exponential spectrum.
Moreover in the region 0 < A < 5 dB 1in which the instrumental
noise effects are most serious, none of the 7 observed scintillation
spectra is exponential. Five of them are gaussian and two are power-

law.

Based upon the above reasoning together with the fact that exponen-
tial spectra had also been observed previously in the very strong
scattering regime by tohen et al. (1967), Cohen and Gundermann (1969),
and Rao et al. (1974), it is therefore concluded that the instrumental
noise alone cannot account for the occurrence of these exponential
spectra.

At the first glance, suggestion (2) appears to be quite p]au§5b1e.
However, this suggestion can also be ruled out by the following argu-
ments. If the shape of the turbulence spectrum Fn(q) indeed changed
from power-law to exponential around o = 0.35 A.U., then not only
the 50 MHz spectra but also the simultaneously observed 423 MHz spectra
should change from power law to exponential in the region p < 0.35 A.U.

Regression results indicate that among 56 423-MHz spectra observed over
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p <0.35A.U., 53 (= 95%) of them are still power-law. Further evi-
dence contradicting suggestion_(Z) comes from the multiple-frequency
measurements by Cohen and Gundermann (1969), who observed that at
higher frequencies the transition into the exponential form occurs
at smaller elongations.

It appears therefore that the exponential spectra result from the
very strong wave scattering phenomenon itself. No interplanetary wave
propagation theory has yet predicted the occurrence of exponential

Spectra in the very strong scattering regime.

2. Power-Law Exponent p of Fn(q)

Recall from Sec. IV.D.2 that during those linear regression tests
in which observed scintillation spectra were best fitted by the power-
law model, the slope ?' of the linear regression line was determined.
It was shown in Eq. (4.30) that p' = 9 + 1, where p' is the estimate
of the desired parameter p, the power-law exponent of Fn(q). The
means and standard deviations of' p' for all cases are listed in
Table 5.2. For instance, in Case 1, there are a total of 89 spectra
that can be best fitted by the power-law model; among these, the mean
value of p' 1is 2.91 and the standard deviation is 0.55. In case 2
there are 86 spectra since we have excluded the three spectra possessing
A <5 dB. The other three cases are similarly derived subsets of -
the original 89 spectra.

After comparing the means of p' for Cases 1-5, it becomes clear
that scintillation spectra possessing smaller values of A usually
exhibit smaller values of p'. To illustrate this point, the prob-
ability distributions, the means (shown by vertical arrows), and the

standard deviations Op's of p' for Cases 1 through 5 are displayed
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' p
. Power-Law Exponent | Power-Law Exponent
Total No. before Correcting | after Correcting
of Power-Law for the Effect of | for the Effect of

Case A Spectra Included A A
Mean S.D. Mean S.D.
1 > 0dB 89 2.91 0.55 3.52 0.46
2 > 5 dB 86 2.92 0.55 3.49 0.44
3 > 10 dB 71 3.05 0.47 3.47 0.40
4 > 15 dB 62 3.13 0.37 i 3.50 0.35
5 > 20 dB 42 3.21 0.29 3.52 0.29

Table 5.2.‘ MEANS AND STANDARD DEVIATIONS OF POWER-LAW EXPONENT F _(q) ”

BEFORE (p') AND AFTER (p) CORRECTING FOR THE EFFECT OF A.
in Fig. 5.1. As the criterion for the minimum value of A increases
successively from one case to another, the population of smaller p'
(< 2.5) decreases sharply, whereas the population of larger p (> 2.5)
remains relatively unchanged. As a result, the mean value of p'
increases--while the standard déviation decreases--gradually from Case
2 to Case 5.

An even better way to illustrate the observed decrease of p' with

A is to plot all 89 values of p' versus A as presented in Fig. 5.2a.
Apparently, there is considerable scatter in p' from day to day. In
Fig. 5.2b the same data are shown averaged over 2.5 dB ranges of A in
order to reduce the scatter. Also shown under each point is the number
of original data from which each of these eleven points is derived. For
instance, the point at A = 3.75 dB respresents the average of 3 values

of p' in Fig. 5.2a over the range 2.5 < A < 5 dB. It should be empha-
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FOR THE EFFECT OF A. ‘
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Fig. 5.2. CONTINUED.
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for the average of p' over mutually disjointed regions of A, these
points are independent of 6ne another.  Note also that this is differ-
ent from the situation encountered earlier in Fig. 5.1 in which one
case (e.g., Case 1) contains data points of another (e.g., Case 5)
such that the resultant means of p' for distinct cases are not

independent. Turning back to Fig. 5.2b, we see that except for the

-~

first two points, which were derived from low-A observations (A <
7.5 dB), all other nine points of average p' appear to increase
almost monotonically with A.

Qualitatively, the decrease of p' with decreasing A may be
interpreted as follows. In practice, the observed scintillation
spectrum Fp(v) is always the sum of the true scintillation spectrum

FI(v) and the noise spectrum FN(v):+

Fo(v) = Fr(v) + Fy(v)

Consequently, the apparent slope (p'-1) of Fp(v)--when plotted in dB
versus log (v)--is always smaller than the true slope (p-1) of FI(v);
and the smaller the value of spectrum signal-to-noise ratio A, the
smaller p' compared with p.

To determine quantitatively the effect of A on p' (so thatw
later the true power-law exponent p may be extrapolated from p'),
consider a siép]ified model in which the noise spectrum FN(v) is
assumed to be white over the frequency band of interest and the true

scintillation spectrum FI(v) is assumed to be power-law for v > 1 Hz:

¥ Possible noise sources include (1) inherent instrumental noise,
(2) quantization noise resulting from A/D conversion, and (3)
noise introduced during digital signal processing (such as aliasing
errors).
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Friv) = v (1) for v > 1 Hz

Several resultant observed specfra Fp(v) for p=3.5 and A = 10,
20, and 30 dB are shown in Fig. 5.3. 1In general, Fp(v) is still
roughly power-law over a certain fitting region 1 < v < g Hz, but
with an apparent slope (p'-1) smaller than (p-1). That is, Fp(v)

may be approximated as

Fp(v) =y (P'-1) for 1 <v <BHz

According to this model, p' 1is less than p by an amount that depends

not only on A but also on the end frequency B8 of the fitting region,

20

A=10dB

SPECTRUM (dB)
o
|

FI(V)

Fn(v) A \ |
L 11 111111 1 Ll L
0.l 10 30 Hz
Iog (v)
a. A =10 dB

Fig. 5.3. THE EFFECT OF THE NOISE SPECTRUM ON THE APPARENT SLOPE OF
THE OBSERVED SCINTILLATION SPECTRUM FOR p = 3.5 AND A = 10, 20,
AND 30 dB. Also shown for each case is the estimated end frequency
B8 of the fitting region.
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Fig. 5.3. CONTINUED.

although the former usually has the far more predominant éffect. Because
Fp(v) is inherently curved as can be seen from Fig. 5.3, the value of

B is rather difficult to define analytically. Recall that a similar
difficulty arose earlier with experimental data in Sec. IV.D.1 in which
the fitting region for the regression test had to be selected. The
approach of visual estimate with some appropriate guidelines was used
there to choose the fitting region and is used here again to estimate

B.  Such guidelines for estimating B include the following:
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Fig. 5.3. CONTINUED.
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(1) The value of B should be chosen such that Fp(v)
i appears to be linear or only slightly curved to the
' eyes; after v > B8, F (v) becomes curved much more
| rapidly than before v < 8 and eventually approaches
the noise spectrum near v = y. Recall that [B8,y]
was called the "transition region" in Sec. IV.D.

| (2) In any case B should always be smaller than 18.3 Hz,
| because that is the highest frequency of our observed
scintillation spectra (see, for example, Fig. 4.7).

| (3) Spectra possessing larger A should generally have
| wider fitting regions or larger values of B.

Three estimated end frequencies ‘B thus obtained are shown in Fig. 5.3.
Once B was determined, a linear least-squares fit was then applied
to each plot of Fp(v) over the fitting region 1 < v < B Hz. The
theoretically predictedAvalue of p' was obtained by adding 1 to the
slope of the linear regression line. For instance, if models are con-
- structed with p = 3.5, then the predicted values of p' are 1.9, 2.4,
2.8, 3.1, 3.2, and 3.3 for A =5, 10, 15, 20, 25, and 30 dB, respec-
tively. These six values of p' had been used as a basis for deriving
the curve labelled "p = 3.5" in Fig. 5.4. Repeating the same pro-
cedure for other.values of p from 3.2 to 3.8 led to the other curves.
The effect of noise on the measuréd slopes is thus determined; each |
curve represents (for one value of p) the expected dependence of“
p' upon A.  For comparison, the mean values of the measured p'
as shown in Figure 5.2b are superimposed upon these curves. It is
clear that p = 3.5 gives the best fit to the observations over the
region A > 15 dB. Because (1) most of our observed spectra lie in
this region, (2) the observed spectra in this region are more reliable

than those having lower A, and (3) the slopes of the regression lines
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(and consequently the resulting values of p') in this region are

less subject to variations of B, it is concluded that
E = 3,5+8 (5.1a)

is the average value of the power-law exponent p for our observed
scintillation spectra, where § --to be estimated shortly--is the
uncertainty associated with the determination of the mean exponent P.
As a check on the conclusion p = 3.5, the effect of noise was
deleted from each of the 89 spectra using the p = 3.5 curve from
Fig. 5.4. This curve can be interpreted as a correction curve, since
it provides predicted exponent p' versus A based upon the assumption
that the true exponent p 1is 3.5. One can therefore subtract the
predicted p' from 3.5 to determine the correction versus A that
must be applied to experimentally derived exponents. This was done
to all 89 observations and the statistics were re-derived. The results
are summarized in the last column of Table 5.2. It is seen that the
correction brings agreement with p = 3.5 even in cases (such as
Cases 1-3) that low-A observations are included. In the most reliable

case (Case 5), the standard deviation Op of the power-law exponent

p 1is given by

=~ 0.3 .1b
% (5.1b)

The uncertainty § associated with the determination of the mean

is considered to be three times the standard error of the mean:

(o]
- =3.--2 .0.13 (5.1¢)
P Viv)
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- Fig. 5.4. THE THEORETICALLY PREDICTED DEPENDENCE OF p' UPON A FOR
= 3.2, 3.3, . . ., 3.8. For comparison, the mean values of the
measured p' as shown in Fig. 5.2b are superimposed upon these curves.
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where 05- is the standard deviation of the mean exponent p, and 42

is the total number of spectra included in deriving p and Op'
Incorporating (5.1c) into (5.1a) leads to
P =3.5%0.13 (5.1d)

Referring to Table 1.1 in Chapter I, it is obvious that among all
{ four scintillation-deduced values of p (4-5, 2.4, 2.6, and 3.5) ours
| (3.5) agrees best with the three values of p (3.2, 3.3, 3.55) inferred
| from in situ spacecraft measurements. The basis of this agreement is
believed to be due to our use of a man-made, point source instead of a

radio star as the source of IPS observations.+

3. Magnitude of F (V)

In addition to comparing the power-law exponent p, it is of inter-
est to compare the magnitude (or absolute value) of the irregularity
spectrum inferred from our IPS data with that derived from in situ meas-
urements. First of a]],_a typical intensity-fluctuation spectrum FI(v)
estimated from our IPS data at 423 MHz may be approximated by [cf.

Cronyn (1972a, b)]

c¢2 G vf(p']) 3 Ve SV S 10 Hz
Fr(v) = (5.2a)

;\)<\)f

¥ As pointed out in Sec. I.B, IPS observations from a man-made, constant-
amplitude, monochromatic, point source at a known distance within the
IPM are free from such uncertain factors as source-diameter effects,
interstellar scattering, and erratic radiation from natural sources.
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- U
here v, =
wnere Ve = oa

quency (Sec. II.C), and c¢2 is a proportionality factor related to

(= 1 Hz at 423 MHz) is defined as the Fresnel fre-
the strength of solar-wind turbulence. Notice that the scintillation
index m may be expressed as [see Eq. (2.57)]

@

m2 = f FI(\)) dv

0

Incorporating (5.2a) into this equation, assuming that FI(v) = 0 for

v > 10 Hz, and carrying out the integration leads to

2
2 .p=2 m p-2
Co = p-1 (A) Ve

for p > 2. With this value of c¢2, F(v) in (5.2a) may then be

restated as
-2 2 -2 -(p-1
Fr(v) = g:T m vfp. v (p-1) (5.2b)

for Ve $v <10 Hz. Since our IPS data at 423 MHz (A = 0.709 meter)

indicate that p = 3.5, Ve = 1 Hz, and m =~ 0.053 p']'5 [cf. Eq.
(5.20)], FI(v) in (5.2b) can further be reduced to
Frlv) = 1.53 x 1073 p'3'° Sk 5 1 Hz £ v <10Hz (5.2¢)

According to Cronyn [1972a (loc. cit. Eq. 6b)], the tempora]vspectrum
Fn(v) of electron-density fluctuations obtained by in situ measurements

is related to FI(v) via

2y v Fo(v)
0.9 x 350 I ‘2 I 3 -1
Fa(v) (p-2) Ut . ,p-1. .2 (el/cm”) Hz (5.3a)
T oo \‘_2_) P A
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where U = solar wind velocity in the x-direction in km/sec
g = ellipticity of irregularities along the z (line-of-
sight) - direction with respect to the x-direction
[cf. Eq. (2.40)]
p = proximate distance in A.U.
A = wavelength of IPS observations in meter
I'( ) = Gamma function

Substituting (5.2c) into (5.3a) and letting p = 3.5, A = 0.709 meter,
o=1A.U., U= 500 km/sec, and g'] =.1.8 [Cronyn (1972a)] yields

1

Fo(v) = 2.15 x 1073 o740 y-1:5 (%5%) (5.3b)

1

R

3 -1.5
v

2.71 x 107 (e]/cm3)2Hz' ; 1 HZ v <10 Hz (5.3c)

as shown in Fig. 5.5. Note that the magnitude of Fn(v) thus deduced
from our IPS data agrees with Unti's (1973) Fig. 5, which may be

expressed explicitly as

2

-2 (e]/cm3) Hz™

.5 1

3.6 x 1074 v 16 ¢ F(v) £ 10 v (5.4)

for p=1A.U. and 1Hz Sv < 13.3 Hz. This agreement proves
further the usefu]nes§ and efficacy of the IPS technique. While
Unti's in-situ measurements and hence the validity of Eq. (5.4) are
lTimited to regions of p = 1 A.U. from the sun, Eq. (5.3b) gives a
more general formula of Fn(v), which is believed to be applicable

for 0.1 A.U. < p <1 AU. It is interesting to remark that our (5.3b)

also agrees (within a factor of -2 at p = 1A.U.) with the following

Cronyn's (1972a) result:

=3 <42 1§ 3.2 o
X1 - p v (el/cm’)¢ HZ™!
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Fig. 5.5. TEMPORAL SPECTRUM OF ELECTRON DENSITY FLUCTUATIONS DEDUCED
- FROM IPS DATA AT 423 MHz.
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B. Fresnel Structure

It has been shown in Chapter II that under appropriate conditions,
the observed temporal spectrum of intensity fluctuations at a single
site--as a result of the screen motion and Fresnel diffraction effect--

will exhibit a sequence of minima (called the Fresnel structure) at

v = Vi, Y2y, s /@1, /1\71, Ce (5.5a)

where

vy = U/viz (5.5b)

and z can be uniquely determined from the geometry of the experiment
via (2.19), provided that the "thin-screen" approximation is applicable.
In an attempt to detect the existence of such a structure in our scintil-
lation spectra, 42 spectra at 423 MHz were examined. Al1 these spectra
were obtained at times when the lines-of-sight were less than 0.3 A.U.+
from the sun. On only eight occasions, the Fresnel structures are con-
vincingly observed. Two such examples are shown in Figs. 5.6a and
5.6b. The arrows indicate the successive positions of theoretical
minima with an assumed first minimum at vy = 2.1 Hz, which, along
with Az = 222 and 226 km, yields the solar wind speed U = 466 and
475 km/sec for Figs. 5.6a and 5.6b, respectively. As evident from
these two figures themselves, the positions of the theoretical and the
observed minima are in excellent agreement and 466 and 475 km/sec are

said to be the solar wind velocities deduced from these two Fresnel

structures. Note that for such a value of v](= 2.1 Hz), Fresnel

¥ The thin-screen model is believed to be a more appropriate model
(and hence chances of observing successfully the Fresnel structure
are believed to be higher) for p < 0.3 A.U. than for p > 0.3 A.U.
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Fig. 5.6. OBSERVED FRESNEL OSCILLATIONS IN THE SCINTILLATION SPECTRUM.
Arrows indicate the successive theoretical minima of the Fresnel

structure with the first minimum chosen to occur at 2.1 Hz for both
figures.
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oscillations after the 5th or 6th minimum become faster than (or com-
? parable with) the resolution bandwidth (= 0.29 Hz--cf. Table G.3) of
; the estimated spectra in Figs. 5.6a and 5.6b, and hence are not
detectable.
The relatively infrequent observation of the Fresnel structure
is not surprising, because normally one expects this structure to be
smeared out by integration through the extended medium (i.e., through
i different parts of the medium along the 1ipe-of-sight, which have
1 different values of 2z and U+ ). By the same token, days for which
- the Fresnel structure is discernible are believed to correspond to
i days on which IPS are caused predominantly by a thin layer (near the
sun) such that z and U in (5.5b) [and hence the positioné of the
minima in (5.5a)] are well defined.
Before leaving this section, it is encouraging to remark that all
eight solar wind velocities (inferred from the eight aforementioned
Fresnel structures in the range p = 0.1-0.3 A.U.) lie between 400
and 500 km/sec, which is of the "correct" order of magnitude as com-
pared with Lovelace's (1970) or Armstrong and Coles' (1972) observa-

tions.

¥ Even if the solar wind has a constant radial velocity, the projected
transverse component of this velocity (i.e., the projected component
of this velocity onto the x-direction) is still different at dif-
ferent points along the line-of-sight.
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C. Correlation Length of Intensity Fluctuations

The temporal width tw of the autocorrelation function AI(t)
of intensity fluctuations is defined as the time at which AI(t) falls

off to one-half of its maximum value:
A(t=t ) = 2 max (A, (t)} = L A (t=0)
I W 2 I 2 1Y

For the normalized autocorrelation functions ﬁl(t) shown in Fig.

4.9,
A(t) = A(t)/A0)
max {A(t)} = A(0) = 1
and tw %s just the time at which ﬁl(t) drops to 1/2:
A(t=t,) = 3 (5.6)

Multiplying tw by the solar wind velocity U yields the correlation

length w (or the apparent scale size) of intensity fluctuations:
re=t, xu (5.7)

For lack of accurate knowledge on the solar wind velocity U,
assume that U 1is constant and equal to 500 km/sec. The values of
rw thus derived are then plotted against the proximate distance p,

as shown in Figs. 5.7a (50 MHz) and 5.7b (423 MHz). As evident from

these two figures themselves, the values of e ranging from about
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Fig. 5.7. CORRELATION LENGTH VS PROXIMATE DISTANCE.
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Fig. 5.7. CONTINUED.
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3 to 300 km, increase with increasing § over the small p region
until they reach a certain bregk point o (pbg =~ 0.55 A.Up and
og"= 0.17 A.U.) and then turn over with increasing op.

Before proceeding with further analysis of these w data, it
is interesting to compare these two figures with Hewish's (1972)
Fig. 5. According to the gaussian model as invoked by Hewish

to interpret his Fig. 5, the value of ' in the weak scattering

regime is proportional to the true scale size of the solar wind tur-

bulence and hence is_independent of the observing frequency.
I[f this is true, then our " data obtained over p 2 0.75 A.U. by

. +
simultaneously transmitting 50 and 423 MHz through the same solar

wind region should be the same (or at least very comparable) at both
frequencies becadse the unknown solar wind velocity in (5.7) will be
just the same multiplying factor for rw2 and r}f{ It cah be
clearly seen from Figs. 5.7a and 5.7b that our data strongly conflict
with this viewpoint. Furthermore, Hewish concludes that the "true"
scale size of the solar wind turbu]ence,'dr equivalently (in the

language of gaussian model) L in the weak scattering regime,

increases approximately linearly with p, whereas our data manifest

almost the opposite: "w decreases sharply with p in the weak scat-

tering regime (p > 0.55 A.U. at 50 MHz and p > 0.17 A.U. at 423 MHz).

Because both in situ spacecraft measurements and the results of
our regression test (Sec. A) greatly favor the power-law model, in
what follows, an attempt will be made to interpret our ' data in

accordance with the power-law model.

For most of our IPS data, the ray path difference due to regular
refraction will be only on the order of a few hundred km or less.
Both the characteristic and the velocity of the solar wind are not
expected to change appreciably within such a small scale.




Perhaps the most striking feature of Fig. 5.7b is the turn-over of
" with p from the weak to strong scattering regime, which, to the
author's knowledge, is being experimentally reported for the first time
for the IPS. Fortunately, the decrease of "w with decreasing p (or
increasing turbulence) in the strong scattering regime has been theoret-
ically predicted by Lovelace (1970) [and also by Rumsey (1975)] who dem-
onstrate that the width of the intensity spectrum increases with the

strength of the turbulence in the strong scattering regime]. According

to Lovelace (1970),

2_

w

where B 1is equal to the scintillation index m in the weak-scattering

limit (g% << 1)
B=m (5.9)
and m itself is a function of A and op:
me AX ¥ (5.10)
As will be seen in Sec. C, our experimental results indicate that
x = 0.8 (5.11)
and b= -1.5 (5.12)

Combining equations (5.8) - (5.12) and, for simplicity, neglecting the

radial dependence of /z over the range of p of 1'nterest+ results

¥ According to the geometry of the experiment, /z varies less than 20%
from p = 0.08 A.U. to p = pb* = 0.55 A.U.
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in the theoretical prediction of

16 3
o.s--)(—_—) |
r, = (x p-2 ) \ jp-2 (5.13)

On the other hand, two visual fits to the empirical data--as shown by

the two straight lines in Figs. 5.7a and 5.7b--yields

rwl =900 %% km; 0.08 < p < 0.55 A.U. (5.14a)
q;"= 6600 022 km;  0.08 < p < 0.17 A.U. (5.14b)

which implies an empirical relation of

| r o A-0.93 p2.2

y (5.15)

Comparing the theoretical prediction given by (5.13) with the empirical

relation given by (5.15), one may equate

1.6 3
0.5 - =5 —
A p-2 and p p-2
in (5.13) to
x70:93 ong p2.2
in (5.15), from which it follows that
p=3.12 (5.16a)
and
p=3.36 (5.16b)

respectively. These two values of p thus inferred are compatible with
P=~3.5%0.13 and op = 0.3 (Sec. A.2) derived directly from least-

Squares fitting to the scintillation spectra, implying that based on the
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power-law model in the strong scintillation regime, the decrease of "w
with decreasing p (or increasing turbulence) may be attributed purely
to the effect of strong scintillation (without the necessity of invoking
the change of intrinsic scale size).

Notice that if one sets x in (5.11) to be 1, as was concluded
by Hewish (1972) and Rickett (1973) from other empirical data, then
the value of p in (5.16a) will be replaced by

p=3.47 (5.16¢)

which is in good agreement with (5.1d). Nevertheless, if one sub-
stitutes, instead, the theoretical prediction [cf. (2.58) or (5.28)]

x= B2 (5.17)

for (5.11), the corresponding value of p in (5.16a) becomes
p=4.15

which then appears to be too large in comparison with the value of p
given by (5.1d). This discrepancy, however, probably results from the
failure of (5.17)+, the theoretical prediction of the wavelength
dependence of. m, rather than from that of (5.9), for (5.9), when
combined with the empirical value of X (either 0.8 or 1), providé§
a satisfactory interpretation of our dual-frequency " data in the
strong scattering regime.

There remains to be interpreted the decrease of " with increas-

ing p in the weak scattering regime. Using a semi-quantitative

t The failure of the power-law model in predicting x will be discussed
in detail in the next section.
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approach, Jokipii and Hollweg (1970) have derived [see also Matheson

and Little (1971)] that ry 10 the weak scattering regime is of the
4 2

order of vAz/2m" [see Eq. (2.55)]:

. Az
Y'w‘O(—z-) (5.]8)
2m
provided that ‘
Az
2 < _<L
’ 2w2 °
where 2, = inner scale of turbulence

L, = outer scale of turbulence

0(x)

the order of magnitude of x

. '3
To check the validity of (5.18), T and rwdl are plotted versus

Az/2m® i Fig. 5.8a (p > 0.55 A.U.) and 5.8 (0 > 0.35 A.U.),

where 2z is derived from the geometry of the experiment via (2.19).
Before commenting, it should be pointed out that for most cases shown
in these two figures, the radio paths are far away from the sun

(p 2 0.5 A.U.) and/or the spacecraft is close to the earth such that.
the thin-screen model may not be a good approximation (i.e., there

may not exist a dominant scattering region of thickness << z).

As a result, /ﬁz/2n2 in (5.18) cannot be well defined, and its
true value could differ from what is plotted in Figs. 5.8a and
5.8b by a factor of 2-3. Keeping this uncertainty in mind, one
may conclude that the theoretical prediction (5.18) based upon the
power-law model is compatible, within the same order of magnitude
as indicated by (5.18), with our observed ry data in the weak

scattering regime.
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D. Scintillation Index

1. The Radial Variation of Scintillation Index

The upper and the lower limits on the scintillation index
m at 50 and 423 MHz are plotted versus p in Figs. 5.9-5.12a.
Because for most indices, the upper 1imit and the lower limit differ
by less than about 20% and do not appear to possess different trends,
only the upper 1limit will be considered in the following discussions.
The radial dependence of m in the weak scintillation regime
(m < 1) is of great interest because the radial dependence of the
strength vﬁ%; of solar wind turbulence may be inferred from the
radial dependence of m via Eq. (2.58).

.Eiﬁ p*2
moefil oz 4 (5.19)

where L 1is the effective thickness of the medium and KN is related

to Fn(q), the power spectrum of electron density fluctuations by
-y P
Fala) = Kya

Because (5.19) is applicable only for weak scintillation, it is advis-

2

albe to neglect m~ (Fig. 5.11) in the region p < 0.55 A.U. and mér

(Fig. 5.12a) in the region p < 0.17 A.U. As evident from Fig. 5.11,

m* rises so sharply to = 1 over the short region of 1 A.U. > p >

R

0.75 A.U. that its variation with p cannot be deduced. Fig. 5.12a,
on the other hand, indicates a clear dependence of mA{ on p in the
weak scintillation regime (p 2 0.17 A.U.). Suppose for the following

two reasons that rﬁ‘s in the "very" weak scintillation regime
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(p > 0.75 A.U.) are also discarded:

1. In the very weak scintillation regime, m'{ is normally

very small (< 0.1) and therefore it is difficult to
measure accurately.

2. In this regime, there may not exist a dominant scatter-
ing region (along the propagation path) of thickness
L <<z such that the thin-screen model, from which
(5.19) is derived, is well-defined.

Then, consider only m'{ over the region 0.17 A.U. < p < 0.75 A.U.

-1.4 p-1.6

in Fig. 5.12a. Several slopes from p to are shown,

and it appears that
m=0.053p"1-5%0.1 (5.20)

would give a reasonable fit. Substituting (5.38) into (5.19) and

neglecting the constant multiplying factor A yields

p-2
-1.5¢
\/KN_LZI"“D]'S 0.1

Letting, for example, p = 3.5 results in

-2

BZ_ z0.375

z = (5.21)

From the geometry of our experiment, it is learned that for 0.17 A.U. <
P <0.75 A.U., 20'375 hardly changes more than about 25% and as a
first approximation may be regarded as a constant. To illustrate this
point, Table 5.3 tabulates some values of p along with the correspond-

: 5 c_0.375 i
ing values of z . Thus,
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Pass No. Date ps A.U. 20'375, kmo'375
10 10 April 1970 0.41 839
11 30 May 1970 0.41 865
12 29 Aug. 1970 0.38 856
14 21 Oct. 1970 0.24 842
17 27 Oct. 1970 0.22 842
73 13 July 1971 0.18 868
75 25 July 1971 0.20 859
77 9 Aug. 1971. 0.24 848
79 13 Aug. 1971 0.25 845
80 14 Aug. 1971 0.26 842
81 15 Aug. 1971 0.27 842
82 16 Aug. 1971 0.27 842
83 3 Sep. 1971 0.34 825
84 9 Oct. 1971 0.48 791
86 2 Nov. 1971 0.56 780
87 5 Nov. 1971 0.57 780
88 23 May 1972 0.65 749
89 7 July 1972 0.72 609
Taga? ;5?. SOME VALUES OF p ALONG WITH THE CORRESPONDING VALUES OF
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kL« p3:0 %02 (5.22)

Assuming the effective thickness L 1is proportional to p [Cohen and

Gunderman (1969), Cronyn (1972a)] gives rise to

ol

]
o
o
i+

Ne o 0.2 (5.23)

or

0.1 (5.24)

]
©
1
[A]
o
+

which implies that the radial dependence of the root-mean-square electron
density fluctuation, No(p), follows approximately an inverse-square law:

< -2
N(p) T o

(5.25)
In contrast to most observations made by using radio stars as

sources [see, for example, Cohen et al. (1967), Cohen and Gundermann

(1969), and Rickett (1973)], neither Fig. 5.11 (50 MHz) nor Fig. 5.12a

(423 MHz) reveals a systematic turnover of the scintillation index

with decreasing proximate distance (although there is indication in

Fig. 5.11 that the scintillation index increases with decreasing prox-

imate distance at a much slower rate after it exceeds about 1). More-

over, our scintillation index at 423 MHz is about a factor of 6 higher

than that at 430 MHz observed by Cohen et al. (Fig. 5, 1967) using

3C 273 as the source. Both discrepancies stated above may be attributed,

at least partly, to their use of finite sources (radio stars), instead

of a point source, which are subject to angular diameter effects (Sec.

I1.1).
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Another experimental evidence sustaining this point of view
comes from IPS observations of the pulsar CP 0950 (which may be
regarded as a point source) af 318 MHz by Zeissig and Lovelace
(1972). According to Fig. 12b, which is reproduced from Zeissig
and Lovelace's Fig. 3, there is again no turnover of m with decreas-
ing p. Furthermore, a comparison between Figs. 12a and 12b shows
that at a fixed p < 0.75 A.U., both indices are in rough agreement
within a factor of about 2--even though their saturation value (= 0.7)

of the scintillation index is slightly too low in comparison with the

theoretically predicted value (= 1).

2. Scintillation Rate Versus Scintillation Index

Define the scintillation rate Vg as
v = Hz (5.26)
S tw

where tw in seconds is the width of the autocorrelation function
AI(t) of intensity fluctuations defined in (2.53). Figs. 5.13

and 5.14 show the relationship between m and Vg at 50 and 423

MHz, respectively. Similar to Figs. 5.5 and 5.6, there are trends

of turnovers. In the small scintillation index (m £ 0.8) region,
because of the Fresnel filtering and the decrease of the Fresnel -
frequency, the scintillation rate Vg decreases with the scintil-
lation index m. For m 2 1, strong scattering plays an impor-

tant role, and the scintillation rate vs is seen to increase
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with the scintillation index.+ Therefore, one may draw, on the basis
of the above results, two interesting conclusions about IPS observed
at a fixed frequency: -

1. In the weak scintillation regime, stronger scintilla-
tions are associated with slower scintillation rates,
whereas

2. In the strong scintillation regime, stronger scintilla-
tions correspond to faster scintillation rates.

To the author's knowledge, such turnover behavior of v_ (Figs. 5.13 and

s
5.14), like the turnover behavior of Ty in Figs. 5.7a and 5.7b is also
being experimentally reported here for the first time.

Finally, the wavelength dependence of Vg («-——) can be easily

inferred from the wavelength dependence of T in (5 18) and (5.15):

1 . . . .
Vg —= in the weak scintillation regime
%y ’
and
Vg T in the strong scinti]]ation'regime

3. MWavelength Dependence of Scintillation Index

As mentioned earlier in Sec. C, the wavelength dependence of the
scintillation index m in the weak scintillation regime is still a
contested point. The main problem is that simultaneous observations

of m at widely separated frequencies, all in the weak scintillation

i Recall that the increase of the scintillation rate v_ (or the
increase of the spectral width of the scintillation sBectra, or
the decrease of the scintillation period tw) in the strong
scintillation regime had been theoretically predicted by both
Lovelace (1970) and Rumsey (1975) using a power-law, thin-screen
model.
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regime, would unavoidably involve measurements of extremely small
m at higher frequencies; accurate measurements of small m are
often very difficult.

Hewish (1971, 1972) has selected published scintillation indices
at four widely different frequencies [81.5, 178, 611, and 2695 MHz,
obtained independently by Hewish and Symonds at Cambridge (1969),
Harris and Hardebeck at Arecibo (1969), and Bourgois at Nancay (1969)]
and derived that

+
0w 1-0%0.05 (5.27)

over a 30:1 range of wavelength, in the weak scintillation regime.
He stressed that (5.27) is not compatible with a power-law spectrum;
the reason is that according to power-law model in the weak scintilla-

tion regime [see (2.58)]
me2d (5.28)

and in order for (5.28) to be consistent with (5.27), the power-1law

index p has to be

p =2 (5.29)

which is too small in comparison with almost all published esti-
mates of p. Further, using the linear wavelength dependence law
(5.27) as the most direct evidence, he [and also Buckley (1971)]

proposed a turbulence spectrum containing two distinct components to
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reconcile the scintillation data and the in situ spacecraft measure-
ments made by Coleman (1968) and Intriligator and Wolfe (1970):
one with large scales of ~106 km having a power-law form, and the
other with small scales of ~102 km having a gaussian form.

Hollweg and Jokipii (1972) examined the same data utilized by
Hewish, plotted mv]'25 and mv against the proximate distance,

drew individual smooth curves through the data at each frequency,

and arqued that within the uncertainties+ of the data

0w 3125

(5.30)
was as good as m « X\. Note that (5.30) corresponds to a power-law

exponent

p=3.0 (5.31)

which is in agreement with Intriligator and Wolfe's (1970) spacecraft-
based observations. Rickett (1973), however, pointed out that Hollweg
and Jokipii's mv]'25 result was not independent of frequency at a
fixed proximate distance, and by analyzing mostly the same data he
claimed that

«1-0£0.15 (5.32)

m
would be an unbiased fit of these data.
Although Hewish's suggestion that small-scale irregularities (on

the order of 102 km) responsible for IPS possess a gaussian

t The uncertainties arise mainly from the fact that these indices were
measured at different times and at different elongations.
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spectrum has been shown to be inadequate on the basis of both Untf's
(1973) in situ spacecraft measurements and our scintillation spectra
results (Sec. A), the wavelength-dependence law of m still remains

as an unsettled problem. In what follows, an effort to shed light

on this problem, using our simultaneously observed scintillation indices
at 50 and 423 MHz from a man-made point source, will be presented. First
of all, let x denote the exponent of the wavelength-dependence law of

m in the weak scintillation regime:
m< )\X (5.33)

Recall that because of the presence of some received intensities below
the minimum detectable level, only the lower limit m and the upper

limit m; of m at each of our frequencies are known. Therefore, the
Tower limit XL of x may be determined from le (the lower limit of

m at 50 MHz) and mu’{kthe upper limit of m at 423 MHz) via

m . £ \x X :
L A L L

= = 8,5 5.34
m <A/> o

9 -
u

(the upper limit of m at 50 MHz) and mL’{ (the lower limit of m at
423 MHz) via

and, similarly, the upper limit Xy of x may be determined from m

2 L
."fu_;{ - (—*7>XU - 8.5V (5.35)
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The values of x, and x, thus obtained are plotted vs the proximate .
distance p in Figs. 5.15 and 5.16, from which we have excluded those
cases when:

(1) mziz 1 (corresponding to strong scintillation at 50 MHz)

(2) m < 0.01 at 50 MHz or 0.001 at 423 MHz (corresponding to
less reliable values of m in view of the minimum resolv-

able magnitudes of the correction factors in Figs. 4.12
and 4.13.

(3) the lower and upper limits of m at either frequency
differ by more than a factor of 1.5 (corresponding to
m of great uncertainty)

(4) m is derived from data collected during calibration
curve experiment in Sec. III.F (corresponding to times
when the Stanford receiver is often pushed to its
operational limit)

Although instrumental limitations preclude our obtaining accurate values
of m and hence of ¥, all xL's in Fig. 5.15 and most xU's in
Fig. 5.16 are consistently below 1. A straightforward calculation of

the mean and standard deviation over the total of 17 data points yields

0.77 £ 0.13 (5.36)

X

Xy

0.79 * 0.15 (5.37)

These are even somewhat smaller than Hewish's and Rickett's x = 1
and are in sérious conflict with a thin-screen, power-law model having
exponent of turbulence spectrum p = 3.5 (Sec. A), which according
to (5.28) predicts x = 2% = 1.4.

The above discrepancy calls for the need to investigate further

(both experimentally and theoretically) the scintillation dependence

upon wavelength. One theoretical approach which appears to be rewarding
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is to include the multiple-scattering effects’ as proposed by Yeh and
Liu (1975), who have found that multiple scattering tends to weaken -

the frequency dependence of m so that the exponent x is reduced

from E%Z .

E. Correlation with Integrated Electron Content along the Ray Path

It is generally believed, but not previously measured, that enhanced
~interplanetary scintillation is associated with enhanced electron content
along the ray path, because the energy available to generate instabili-
ties is proportional to the mean plasma density for a given temperature

anisotropy [Houminer and Hewish (1972)]. To check if such a belief is
indeed true, the integrated electron content I (Sec. III.H) is plotted
A

vs simultaneous measurement of m (or mU --to be more precise)

along the same propagation path in Fig. 5.17. The linear line
I < (5.38)

seems to give a rather good fit within the scatter of the points, and
therefore suggests that IPS observations can be used to monitor the
electron content along the propagation path.

To further examine, for a given p of ray path, whether the increases
(or decreases) or 1 and m above (or below) their averages are also

related, define the averages of I and m (at a given p) as

T- ‘—"—32—'5 . 108 e1/m?  (5.39)
m=0.053p '3 (5.40)

! t Note that the thin-screen model is effectively a single-scattering

model.
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where
S = the earth-sun-Pioneer angle in radion
p = the proximate distance of the ray path in A.U.
While (5.40) is simply an empirical equation based upon (5.20), it

can be easily shown that (5.39) is in fact derived from

Pioneer
T=7.6 x10%01.495 x 10”)/ 072 4z (5.41)
earth

i.e., from the assumption that the mean electron density of the solar
wind, with its value at the earth equal to 7.6 el/cc, are inversely
proportional to the square of the radial distance from the sun. Based
on these two definitions of 1 and m, Fig. 5.18 illustrates I/I

vs m/m. The strong correlation between I/T and m/m confirms the
important conjecture that in the solar wind, enhanced scintillation is
closely associated with regions of enhanced electron content (or elec-
tron density) along the line of sight. A careful reexamination on
this figure appears to suggest that our data points fall into ‘two
slightly different groups (one over the upper left half, and the other
over the lower right half, of the figure), implying that there may
exist two slightly different scattering regimes.

According to Houminer and Hewish (1972, 1974), some of these
enhanced density regions may be identified with the compression
regions located at the interface between fast and slow so]ar-wind
streams corotating with the sun, and by observing IPS of the regions
to the east of the sun, it has already been possible to forecast (up
to 6 days in advance) the arrival at the earth of solar wind sectors

of enhanced density.
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Chapter VI
CONCLUSIONS AND RECOMMENDATIONS

The existing theory of IPS, based upon the so-called thin-phase-
screen approximation, for both weak and strong scintillation regimes
has been reviewed and applied to interpret IPS data collected at
Stanford during the period 1968-1973. These IPS data were acquired
by radiating simultaneously 50- and 423- MHz CW signals from Stanford's
150;ft. paraﬁo]ic antenna to the sun-orbiting Pioneer 9 spacecraft in
the interplanetary space and then telemetering back to the eérth.

The closest distance of the line-of-sight to the sun ranges from

0.1 to 1 A.U. Experimental apparatus and procedures of data reduction
have been described in considerable detail. The inherent ambiguities
of the previous IPS data, obtained from observations of quasars or
pulsars, were pointed out; and the advantages of the present experiment,
stemming mainly from the use of a man-made, point source, were empha-
sized.

Because the scintillation spectra (i.e., the power spectra of
intensity fluctuations) tell directly the structure of small-scale
irregularities, they have been carefully estimated and tested for three
possible hypothetical forms: power-law, exponential, and gaussian. |
The logic of a computer program devised to perform such tests was“
presented, and results of these tests have led to two major conclusions.
First, the suggestion of a gaussian micro-structure of interplanetary
electron-density fluctuations by Buckley (1971) and Hewish (1971, 1972)
is incompatible with the observed spectra. Second, the spatial power
spectrum of small-scale electron-density fluctuations at heliocentric

distances 0.1-1 A.U. from the sun follows a power law with mean
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exporent P = 3.5 + 0.13 and standard deviation o, = 0.3.  This
mean value of the power-law exponent p agrees better with the in
situ spacecraft measurements neér 1 A.U. than any other scintillation-
deduced values of p (cf. Table 1.1), indicating that IPS observa-
tions from a man-made, point source are probably superior to those
from radio stars in yielding definite information about the structure
of the interplanetary inhomogeneities.

The strong resemblance between the power spectrum of interplanetary
magnetic-field fluctuations, reported by Coleman (1968), and that of
interplanetary electron-density fluctuations, deduced from our scintil-
lation data and other in situ spacecraft measurements, appears to sup-
port plausibly the belief that interplanetary magnetic-field lines are
essentially frozen-in to the medium. It is well known that in a per-
fectly conducting fluid, the magnetic flux lines are frozen into the
fluid [see, fdr example, Cambel (1963) and Sechadri (1973)]. Because
the solar wind is highly conducting with a very large magnetic Reynolds
number, it is generally believed that magnetic fields present in the
interplanetary space are frozen-in to the plasma [Ness (1965), Lust
(1965), Brandt (1970)]. If this is indeed true, then one would expect
the power spectra of magnetic-field and electron-density fluctuations
to possess the same form such that Kraichnan's (1965) hydromagnetic
turbulence theory, which predicts a power-law magnetic-field spectrum
of exponent b = 3.5, may be invoked to account for our scintillation-
deduced, electron-density spectra. According to Kraichnan's theory,
instabilities first develop at long wavelengths [e.g., as a result
of large-scale differential streaming in the solar wind--as suggested

by Coleman (1968)] and then cascade down to smaller scale sizes via
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nonlinear interactions and equipartition between magnetic and kinetic
energy.

We have demonstrateq that in cases of very strong scintillations,
the observed scintillation spectra tend to be exponential rather than
power-law. We have also shown that neither the instrumental effects
nor the genuine changes of the turbulence spectrum forms alone can
explain the occurrence of these exponential spectra. It appears that
these exponential spectraAare caused by the very strong wave scattering
phenomenon.

Of forty-two 423-MHz scintillation spectra analyzed, all in the
range p = 0.1-0.3 A.U. and having frequency resolution 0.3 Hz, only
eight appeared to have discernible Fresnel structures. The eight
solar wind velocities inferred from these structures lie between 400
and 500 km/sec, which are in agreement with the results reported by
Lovelace et al. (1970) and Armstrong and Coles (1972). It would
certainly be desirable to extend the present single-site experiment
to multiple-site observations, so that the solar wind velocities
simultaneously determined by the Fresnel-structure method and by the
Cross-correlation method [e.g., Hewish et al. (1966), Vitkevich and
Vlasov (1970), Ekers and Little (1971), Watanabe et al. (1971),
Armstrong and Coles (1972)] may be precisely compared. A Valuablé
by-product of multiple-site observations is, of course, to yield
information about the ellipticity of the diffraction pattern and
therefore that of interplanetary irregularities.

The radial dependence of the correlation length " has been
shown to be compatible with the power-law model of exponent 3.5;
however, the wavelength dependence of ry, and that of the scintilla-

tion index m remain unexplained. It is hoped that improved multi-
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frequency experiments (e.g., simultaneously at 100, 200, 400, 800, and
1600 MHz) with well-calibrated m=ceivers and further theoretical work
(e.g., taking into account the = fect of multiple scattering) will help
to clarify this question in the near future.

Although the scintillation index m, calculated from out point-
source data and corrected for receiver noise effects, tends to saturate
around 1 in the strong scintillation regime, no systematic turnover of
m with p has been observed. This is in contrast to most previously
published results using quasars as sources, but agrees well with the

-1.5

theoretical prediction. The radial dependence of m, m = p , 1in

the weak scintillation regime was interpreted as a manifestation of

AN « p-Z.O’ AN being the rms electron density fluctuation.

The cross correlation analysis between the integrated electron
content I and m has disclosed that not only these two parameters
but also their deviations from means are approximately linearly related.
This suggests that IPS measurements from an appropriate point source
Provide an important method for monitoring the density and density
fluctuation of the solar wind. A profitable extension of the present
experiment would be more frequent observations, so that the relation
of IPS to the solar activity [e.g., Vitkevich and Vlasov (1972)] and
to the corotating sectors of enhanced density [see, for example,
Dennison and Wiseman (1968), Houminer (1971), Watanabe et al. (1972),

Houminer and Hewish (1972, 1974)] may be studied on a day-to-day basis.
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Appendix A
SIMPLIFICATION OF THE INTEGRAL Q

To simplify the following integral:

L/2 L/2

Q= dx dy f(x-y)
-L/2 -L/2 Y Y

we transform the variables from (x,y) to (a,8) by letting
a=X-Yy
and

B = -;- (x+y)

In terms of new variable o and B ,

X =-% a+ B
y=-la+ B
2
x 100
da aB 2
dx dy = 3 (X,y) dadB = da dB = do.dR = da dB
3(0-,3 Q.X ix_ '%_ 1
. Ja a8 :

and the integral Q becomes

= d fla) d
Q ) 2 8,/;] (a) da
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where, as illustrated in Fig. A.1,

L -28 . /2%8o0
-L+ 28 ; 0832
and -
L + 28 ; -L/2<g%o
0'2'-" < <
L - 28 ; 0822

If f(a) is an autocorrelation function having correlation length 2
(i.e., |f(a)] 20 for o >2) and if 2 << L, Q can be approxi-

mated by

L2 i} : , .
x dg do f(a) = L da f
e -L/2 j.;; * '[; * (a)

which completes the simplification.
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Appendix B
PROCEDURE OF DERIVING RECEIVING ANTENNA PATTERNS

Because the Stanford receiving system on board the Pioneer 9
spacecraft was originally designed for the purpose of interplanetary
electron-content measurement, not for IPS study, the receiving antenna
patterns at 49.8 and 423.3 MHz were not measured prior to launch
(although certain on-ground measurements of small-scale model patterns
were made during the design phase of the receiving antennas). As a
consequence, the receiving antenna patterns could only be derived from
in-flight Fofmat D data (Sec. III.D). 1In doing so, one of the major
difficulties encountered arose from the fact that Format D data is not
a measure of input signal power Si’ but rather is a measure of input
signal-to-noise power ratio Si/Ni’ where both Si and Ni are func-
tions of fhe receiving antenna pattern A(w,e)*. In particular, S,

i
may be expressed as

w

S, =(—l)- N; = A(,6=0) - I « A(y,6=0) (B.1)
i Ni i
where I (assumed to be constant for days when IPS are neg]igib]e) is
the arrived signal power (or intensity) at the spacecraft, and 6 is
set to zero because the signal source, earth, is in the plane of “
ecliptic.

Fortunately, a rough estimation indicates that

(N:)

N‘ MaX . 0.3 dB (49.8 MHz) or 0.2 dB (423.3 MHz)
i‘min
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which is much smaller than

(84 nax ) [A(w,e=0)]max
Silmin  [A(,0:0)] .

=4 dB (49.8 MHz) or 7 dB (423.3 MHz)

Therefore, Nio’ the zero-th order approximation of Ni’ may be regarded

as a constant

NiO = N = constant

to yield Sio and Ao(w,9=0), the zero-th order approximations of Si
and A(vy,6=0):

S.
={1) . « =
Sio (N ) Nio Ao(w,e 0) (B.2)
Format D output

Note that (D.4c) may be used to determine the constant of proportional-
ity for Ao(w,6=0) in (B.Z)L Furthermore, the assumption (see the
footnote on p. 189)

A(y,6#0) « A(y,6=0) (B.3)

along with (D.4b) enables the computation of Ao(w,efO) from
Ao(w,e=0).

Once Ao(w,e) is known, the first-order approximation T, of the

1
total received noise temperature T can then be calculated via pro-
cedures described in Sec. III.G to give rise to Nil’ the first-order

approximation of Ni [see (3.13)]:

N = kBT, (B.4)
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Replacing Ni0 in Eq. (B.2) with Ni] (and later with Ni2’ Ni3’ .. )
and iterating the process‘between Eqs. (B.2) and (B.4) results in

i A1(w.0) [Az(w,e), A3(w,0), . . .). A more detailed description of such
3- a procedure is illustrated by the flow chart in Fig. B.1, where subscript
n(=1,2, 3, .. .) denotes the n-th order approximation. Note that
Format D data on 9 Feb. 1969 (ninety days after launch) was chosen as

the base record for deriving receiving antenna patterns because 9 Feb.
1969 was the date on which Pioneer 9 spacecraft was very close to the
earth (= 0.14 A.U.), IPS effect appeared to be negligible, an& the
arrived signal intensity I was steadier than any other days.

As n increases, An(w,e) at either 49.8 or 423.3 MHz converges

| so rapidly that for all values of y and 9,

110 10g A,(4,6) - 10 Tog Ac(y,0)| 1074

e p——  \—————
A7(w,6) in dB As(w,e) in dB

dB

or, equivalently,

-5 <A7(w,9) < ]_5
1-2x10 -W—e-)-_ +2x10

Thus, the seventh order patterns A7z(w,e) and A}éiqhe) at 49.8 and-
423.3 MHz respectively were selected to be the final receiving antenna
patterns, whose values in dB, in the ecliptic plane (i.e., ©6=0), are
shown in Fig. 3.4. A detailed listing of these values is provided in
Tables 8.1 and B.2, where all numbers are read from left to right and

- then top to botton. For example in Table B.1, Az(w=1°) = 3.7337 dB
A% (y=8°) = 3.5461 dB, A*(y=9°) = 3.5070 dB, etc.
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FORMAT D PROCEDURE
DATA ON _p| CALIBRATION ON P. 69
9 FEB 1969 CURVE (SEC. IV.A)
SPIN
% PERIOD
i
A__(y,8)| PROCEDURE | T N. S. |SUPERIMPOSE
nol 7 IN n X }—= % in . AND
SEC.III.G AVERAGE
kB

M’_ £Qs. (8.3) |An(%6-=0)
AND (D.4b) [ —

EQ. (D.4c)

Fig. B.1. PROCEDURE OF DERIVING RECEIVING ANTENNA PATTERNS.
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2,7337 3.7167 3.6963 33,6726 3,645 3.6155 3,5823 13,5461
35070 3,4650 23,4198 343682 23431237 33,2566 3.1970 3.13%0
3,0700 2.9978 2.923R 2.,8478 2,770l 2.6902 2.6078 2,5242
204396 203546 2.2682 2.1817 2.,0950 2.0087 1.9219 11,8358
- 167502 11,6659 1.5826 145003 1.4199 11,3416 11,2652 1.1912
1.1199 1.0513 0.9857 NGe9229 048638 0,8NTR 00,7557 04707
| 06623 046218 05851 065529 Coe5244 CoSCO& (Ce%809 0.4661
- 0.4554 0.44585 00,4480 0.4512 0.45°0 0.4712 00,4881 00,5092
05351 065649 (045994 0e&377 CebBC3 007266 CeT7770 048309
0.8883 0.9493 1.0131 1.0804 1.,1502 1.,2230 1.2977 1.3751
164544 15353 1,6178 17015 17864 148713 149570 2+05629
| 21290 242140 2.29R7 243825 2.4A54 2,5471 2,6269 2.70%52
! 2¢7B14 2.8558 2.9265 29941 2,0560 2,1212 3.1802 3,2357
‘ 3,2837 3.3284 3,3699 13,4077 3.4421 3.4728 2,4998 3,5227
345409 345542 3.5639 345698 345720 35704 32,5650 3.55%59
3.5430 13,5265 33,5062 3,4803 3,4503 3.4165 33,3788 3,3376
242927 3426444 2,1929 3,1357 340727 30065 249374 248658
27906 247116 2.63046 2,5473 2,462 2,3752 2.,2867 2.1971
261086 2.0149 149225 1.8300 17377 11,6451 1.5531 11,4618
13717 1.2828 1.1956 141100 1.0263 0,9446 0.86%53 0.7884
0.7140 10,6422 0€.5731 05070 Co4436 N,3832 (0,3257 00,2711
002193 0.1703 O0.1241 0.0804 Ce03S1 -0,0000 -0,0370 ~0.0733
‘ ~0.1082 N, 1419 -0, 1746 0.0MM5 0.009 0.0210 0.0352 0.0523
‘ 00727 00963 041234 061561 01885 Q2267 Ce2h86 063163
063637 0.4167 00,4734 0,5336 0.5973 O0.6&41 0.7340 0,8070
0eB8B26 0,908 140413 161240 162087 12949 1.3824 1.4711
1 165607 1.6509 1,7415 1.8320 19274 2.0117 2.1002 2.1877
- 202739 2.3573F 2,4399 22,5200 265978 2.6730 247451 2.8144
248807 2.9437 121,002% 3.,0569 11,1076 3,1547 33,1978 11,2370
3.2721 3.201& 12,3253 33,3453 12,1814 21,3734 12,3815 3,285K
- 3,3856 21,3817 3,2738 23,2821 32,3665 3,3272 12,3062 3,2777
3.2475 22,2141 32,1771 33,1341 22,0877 13,0383 2,9860 2,9309
248731 248130 247496 2.6R33 24,R15& 2,54%9 2,4749 2.,402%
262208R 2.2543 2,179 2,1040 2,0285 11,8524 1.8768 1,8020
167279 166567 1.,5826 1.,5118 144429 1,379 11,3111 11,2488
11889 1.1319 1.0777 1.0266 09788 (e9344 CoB936 0,8564
0e8230 047934 CoeT74T79 O0e74%5 0e72%1 07159 07069 0.7024
0.7020 0.7061 0.7142 0.7269 0.7436 0N.7¢49 0.,7900 0,.8196
068528 O0eR903 0.9217 0.97565 1,025 1.0774 1.1331 1.1917
162537 1.3183 1.,3858 164557 1.5282 1.6026 1.67S0 1.757?
18367 19172 1.9985 22,0810 241639 242466 243292 2.4120
264941 2.5758 2.6563 247357 2.8l41 2.8909 2.9648 3,0362
3,1059 3,1722 13,2384 3,2968 3,3516 3,4035 13,4527 33,4991
3e5424 33,5799 12,6130 32,6434 3,67C5 22,6944 3,7150 13,7323
3.76462 3.756R 3,7629 3,7674 33,7677 33,7644 22,7576 33,7474

Table B.1. 49.8 Miz RECEIVING ANTENNA PATTERN A%(y,0=0°) IN dB,
. FOR ¢ = 1° TO 360° IN STEPS OF ONE DEGREE.
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29346 2.%57C2
2.5674 2.6931
3.2421 2e 790K
2.9416 2.9822
26638 2.6416
240226 24,4094
261426 72,3091
13815 1.C0937
1.1099 0,9824
06739 065911
0.3251 0.224n
-0e1451 -0.3110
-105’57 -1.8854
~261052 -1,941¢
=0.7758 -0.6633
062575 03743
0.9417 GC.9149
1.0188 00,9194
1e3326 1e4655
1.5377 1.%pR31
1+85645 149993
244734 2,.5397
3,0276 3.1010
3.8797 3,8B742
404266 44725
442372 4.4616
342755 33,2071
149292 1.8553
1.5380 1.5021
164721 1.5916
2.1392 2,3063
2,2139 13,234R
3.8831 3.8800
39852 4,0R0R1
3.86475 13,9746
2,9135 3,8208
362562 2,017}
2.455S 2.72876
le7511 1.£6825
1.732¢ 11,7741
1.8091 1.8126
0.994% 0.8990
0.7409 0,9108
07945 0.,9312
19396 2,209
Table B.2.

FOR y = 0° TO 359°

27242
2.8075
2¢ 71946
3.0256
2+4818
2¢ 3969
19517
l.1186
0s8412
0«4590
0.3244
-0e4494
“?.. ?567
-1.6005
"0. 5493
Ce 5203
0.8818

le3144

1,233
1.6324
200565
2. 6088
249852
2.8677
4e 3527
44,2237
28571
1.7020
1.4692
1e 7449
2.4717
3.0515
1.8T72
3, 8514
3.9139
3.7230
3.1147
2.1191
1le 72%4
1.8106
16€127
O.7581
0. 4057
1. 2505
146695

2.9210
23334
27914
2.9178
203245
23848
le 9084
la1426
0.8274
0632A2
0.6666

-~ 05868

-1.R352

-lebb54

‘001‘106
0e 5624
0.2526
1.2248
le2R64
1.6988
201212
2.6872
343232
31,8672
bo 41173
4,0044
25071
1.5478
1.42918
1.9002
2455567
3.1705%
3.BT46
36 9659
1,8529
3. 6(),2
3.1504
2.54N6
le 7894
1.5845
146022
00,6962
0e 5807
1e5661
2,2098
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246817
2.4511
27902
28473
201691
23227
1. 8664
O.98¢4
C. 81856
0.5863
0.1497
‘007235
"1.8399
~1le¢3512
~-0.,1982
0.6017
0.9357
1le1292
13518
1.8241
201865
2.7541
3e 54172
3,.8999
Lo 4684
440513
22283
1, 5471
1.5307
200638
2.6915
22779
3.9471
400783
12,9287
2, 6005
2.87C7
2.1058
1.8060
1.5985
le 5927
0.5642
0. 7509
le 3457
2041702

423.3 MHz RECEIVING ANTENNA PATTERN
IN STEPS OF ONE DEGREE.

2¢£ET746 246886  2,7067
2.5585 ?72.7613 3.0015
2. 8557 3.0313 3,2063
2.8474 2.7070 2.£B854
245074 245039 ?2.5027
242570 2.1916 1.9845
1.8257 1.6802 1.5321
10664 1,2063 11,2300
0.8096 05620 0.6183
0e3334 003325 0.6759
=0,3648 0,1903 N,0N241
—0e4G46 ~0s9543 -1,4305
-1.B449 -1.8475 -2,2700
—0e9492 -0.8631 -0.77464
0.0366 0.2628 0.,1429
0. 8020 043703 0.9400
0.9%83 1,0592 1.,1193
140390 141393 11,2365
162315 11,2319 1,229R
1,9508 1,6237 11,7393
2¢2%R2 2432%4 2,3978
2,8204 2.8902 2.9603
33789 2.3829 3.3896
3.9238 2,9708 4,4775
42274 442308 44,2317
A R5L4  3,64TT7 13,5440
20912 2.1684 2.0483
le4845 1442046 1.,3552
1.6299 1,2236 1.3491
149849 2.1017 2.2220
2.8272 2.9582 33,0912
364262 3.3774 3,3289
3.96282 2,9748 13,8870
401377 64.0771 44,0740
4,0067 64,0839 4,0096
3e5408 32,6922 3,4809
2.7818 2,6893 2,5957
1. 7054 1,R84]1 1.,81R8
20149 147559 11,5058
1.6114 1.6252 1.8050
1le £210 143625 1.2059
0.6502 0,7361 0.57C9
1. 0007 049232 048589
1.4631 1.5742 1.6738
201342 2472148 2,5236
Aﬁ/(u),6=0°) IN dB,




Appendix C
» DIGITAL ERRORS OF A/D CONVERSION DUE TO THE SUN PULSE

As was pointed out in Sec. III.D, the occurrence of the sun pulse,

unlike the sampling of the sampler, is not controlled by any timing

- signal from the spacecraft telemetry subsystem; the éun pulse is
energized (and hence the Format D output is quashed) whenever the sun
sensor of the spacecraft points to the sun (approximately once per sec-
ond). As a result, the quashing of the Format D output takes place
asynchronously with the subsequent A/D conversion, thereby creating
digital errors at the output of the A/D converter. This appendix is
intended to give a brief account of these errors.

Recall from Secs. III.D and E that each Format D output is trans-
formed by the A/D converter into a 6-bit binary number and then appended
with a parity-check bit to form a 7-bit telemetry word. The relation-

- ship between the word rate pulse and bit rate pulse is shown in Figqg.
C.1 [see Fig. B.2 of Koehler (1965)], where Tm m=1,2,...,7)

" th

denotes the time at which the i~ bit shifts to the (1'+1)th bit.

The process of A/D conversion is carried out by a 6-bit successive-

1..

approximation converter. In general, the operation of a k-bit

successive-approximation converter can be mathematically described

as follows. Let x designate the analog input to the converter and
b]b2 .. bk- be the binary output, b] and bk being the most and
least significant bits, respectively. During the time interval
Tm-l‘i t < T,  of the m-th bit conversion, the converter supplies--
via an appropriate feedback circuit--a reference voltage Voo for

T see Cadzow and Martens (1970) and Peatman (1972) for discussions of
the so-called successive-approximation method.
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1 WORD (OR SAMPLING)
} RATE PULSE |

| s L LI EL Pl Erl 0

oM TG Tt h To

Fig. C.1. RELATIONSHIP BETWEEN WORD AND BIT RATE PULSES.

comparison with x. The value of the m-th bit bm is then given by

I] if x 2 vy at t = Tm_]
bm = l sy m=1,2, .. .,k (C.1)
0 if x<v at t= Tl
where Vi = ok-1 (C.2)
and
k-m . -
+2 if x Z'Vm-l at t = Tm_2
Y = Vi1 l e s m=2,3,.. .,k (C.3)
-2 if x<v, 4 at t= L

Under normal operating conditions, the sample-and hold circuit holds

the values of x constant over the entire period of each conversion

(i.e., over T, St< Tk) so that the resulting binary output b.b

1Py - - -
bk can approximate x with an accuracy of the value of the least signif-
icant bit (LSB). An example for k =6 and x = 23.5 is illustrated in
Fig. C.2, where the values of v, are derived from Egs. (C.2) and (C.3).
Based on Eq. (C.1), Table C.1 lists the resultant values of b, and the
corresponding reasons. Note that b]b2b3b4b5b6 = 010111 has a decimal

value of 23, which is approximately equal to x (= 23.5).
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i' v;=32
30
x=23.5
| = v3=24
| R et S T g mmmmmoms |
| V5= 22 vg=23
i V4= 20
s
-
g V=16
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o -
W
. o
. 10}
o 1 1 1 1 1
To Ty T2 T3 Ta T Ts
TIME

- Fig. C.2. VALUES OF v UNDER NORMAL OPERATING CONDITION FOR x = 23.5.
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b Reason
by =0 ' 23.5 < vy = 32
b2 =1 23.5 >V, = 16
b3 =0 23.5 < vy = 24
b4 = ] 23.5 > Vg = 20
b5 =] 23.5 > Vg = 22
b6 =] 23.5 > vg = 23

Table C.1. THE VALUES OF bm FOR k=6 and x = 23.5.

During the occurrence of the sun pulse, the Format D output (or
the input to the A/D converter) is quashed down to the base line (which
has a decimal value of 1) for a duration slightly longer than two tele-
metry-word time (Sec. III.D). Because the sun pulse is triggered when-
ever the sun sensor points to the‘sun, this quashing could take place
any time--before (or after) a certain conversion begins (or ends),
thereby interrupting the normal operation just described in the above
paragraph. Consfder first the effect of such interruption near the
tail edge of the sun pulse. As an example, suppose the clock time T

of the tail edge is given by

and, again, the value of the Format D output (before quashing)

x=23.5 ; T, <t<Tg

After quashing, the input to the A/D converter can be expressed as




1 3 T, 2 t< Ty
X =. (C.6)

23.5 Ty < t< T6

as shown in Fig. C.3, where the values of Vg are again derived from
Eqs. (C.2) and (C.3). Based on Eq. (C.1), Table C.2 1ists the resultant
values of bm and the corresponding reasons. Note that this time the
Format D data (i.e., the output of the A/D converter as indicated by
Fig. 3.6) b]b2b3b4b5b6 = 000111 has a decimal value of only 7, which
" no longer approximates the value (23.5) of the Format D output and
hence should be regarded as an error caused by the sun pulse. In fact,
the above discussion can be easily extended to show that for T2 <

Ty £ T3 and any x in (C.5) greater than 7, the Format D data is
always 000111 (= 7). Carrying out this argument further for other
values of Ty leads to Table C.3, which summarizes all possible errors
of Format D data due to the effect of the tail edge of the sun pulse.
As evident from Fig. C.3, the tail edge of the sun pulse usually tends

to affect bits near (and including) the most significant bit.

bm Reason
b] =0 x=1¢ vy © 32 at t = T,
b2 =0 x=1¢< Vo = 16 at t = T]
b3 =0 x=1<vy= 8 at t-= Ty
by =1 x=23.5>v,= 4 at t-= T3
b5 =1 x=23.5>v.= 6 at t-= Tq
b6 =] x = 23.5 > Vg = 7 at t = T5

Table C.2. THE VALUES OF bm FOR T, <1, < T WITH x GIVEN
[y £\
[+ “U .
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OECIMAL VALUE

W=32
30F
----——--5 -----------
r
|
|
|
20 i
|
i
=6 !
L= |
o]
V4= 8
2 l V6=7
| e
- : %F4
i
]
|
] " S —— 4
0 1 1 i i 1
T0 Tl TZ Tt T3 T4 T5 T6
TIME
Fig. C.3. VALUES OF Vi WHEN T2 < T, < T3 AND x = 23.5.
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Resultant Format D Data
Conditions That Could Be in Error
Ty X b]b2b3b4b5b6
Ty < Ty T x 2 31 011111 (=31)
T < . Ty x2 15 001111 (=15)
Ty < T, S T3 x> 7 000111 (=7)
T3 <Ty S T4 x> 3 000011 (=3)
T4 <T, s Tg x2 1 000001 (=1)

Table C.3. EFFECTS OF THE TAIL EDGE OF THE SUN PULSE ON FORMAT D DATA.

The effect of the leading edge of the sun pulse on Format D data
is in general less severe than that of the tail edge just described,
because normally only bits near (and including) the least significant
bit will be affected. Consider for example the case when the clock

time T, of the leading edge is given by
T2 <1y s_T3 (C.7)
and the Format D output before quashing is again
x =23.5 T0 <tc< T6 ' (9}8)
After quashing, the input to the A/D converter becomes

23.5 To <t < T,

X = | (C.9)
] 5 Ty <t < T6

Based on Eqs. (C.1)-(C.3), it can be shown easily that vy = 32,

v, = 16, v, = 24, = 20, =17, and b,b,b,b,b =

Ya Y6 1°2°3°4°5% ~
6). Let D denote the decimai vaiue of the Format D data

3 v5 =18,
H

<o

NnNNN { —
UuUuu  \ <
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b]b2b3b4b5b6. Further considerations of other values of x in (C.8)

give rise to

8 if 8 <x<16
16 if 16 < x < 24
24 if 24 < x < 32
D= 32 if 32 <x< 40 (C.10)
40 if 40 < x < 48
48 if 48 < x < 56
56 if - 56 <x < 63

In other words, D is always a multiple of 8 (or b2b5b6 = 000) if
x > 8 and T2 < Ty < T3. This result can be readily generalized to
the following: For Tm-] STy < Tm’ the Format D data D is always

a muiltiple of 25°™ if x > 26-m,

Particularly, when T4 $Ty < T5.
D is always a multiple of 2 (i.e., D is even) if x > 2. Because
these values of D for m <5 could differ from the expected values
of D (which always approximate the values of x to accyracy of 1)
under narmal operation, they should also be regarded as errors from a
conservative point of view. Note that all these possible errors are
even.

In summary, if any Format D datum before (or after) the sun pulse
has an even value (or one of the following values: 31, 15, 7, 3), thenm
it could be an error ensuing from the asynchronism of the sun pulse

with the A/D conversion. During wild-point editing of data reduction

(see Fig. 4.1 and p. 65), all these possible errors are discarded.
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Appendix D
RECEIVED COSMIC NOISE TEMPERATURE Tc

As pointed out in Sec. III.G, Tc£ and TCA' can be obtained by

convolving the receiving antenna patterns with the radio sky maps at

49.8 and 423.3 MHz, respectively. Because the spin axes of the receiving
antenna patterns are perpendicular to the ecliptic plane (Sec. III.C), .
it is desired for simplicity of numerical convolution that the radio

sky maps are plotted in an ecliptic coordinate system (Fig. D.1), in
which the ecliptic is the reference plane and the coordinates are b,

the celestial longitude measured eastward in the ecliptic plane from

the vernal equinox, and 6, the celestial latitude measured northward

(0<»o 5_%) or southward (- %-5 6 < 0) from the ecliptic plane.

POLE OF
ECLIPTIC

NORTH POLE
‘ OF EARTH

~
~d

PLANE OF ECLIPTIC

SUN SENSOR AXIS
OF PIONEER 9

VERNAL EQUINOX

Fig. D.1. ECLIPTIC COORDINATES AND DEFINITION OF .
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Unfortunately, almost all the radio sky maps available are shown only
in equatorial or galactic coordinates. As a consequence, conversion
of these maps into ecliptic coordinates is necessary before they may
be directly utilized.

During actual evaluation of Tc2 and TCA; Kraus' (1966) 250
MHz radio sky map of brightness temperature distribution Tb(a,é)
in equatorial coordinates (a,8) was adopted and transformed into

ecliptic coordinates (9¢,6). The formulae relating (a,8) to

(¢,6) are
cos 8 cos a = cos B cos ¢
cos 6 sin o = cos 6 sin ¢ cos € - sin ¢ sin €
sin § = cos 8 sin ¢ sine + sin 6 cos ¢
where a = right ascension
§ = declination
€ = the obliquity of the ecliptic with respect to

the earth's equator = 23.5°

Tb(¢’e)+’ the brightness temperature distribution of the radio sky at

250 MHz in ecliptic coordinates, thus attained is then frequency-scaled

-2.32

by using Tb « v as the scaling law [see Fig. 4 in Chap. 27 of

Reference Data for Radio Engineers (1968)] to result in

-2.32
T,56,8) = T,(6.6) x (3252) (0.1)
and
-2.32
T4(6,7) = T, (6,1) x (33:3) (0.2)

Because the earth-spacecraft distance is sufficiently small compared
with the galactic dimensions, T,($,6) observed at earth is also
applicable to the receiver on board the spacecraft.
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Convolving T (¢ 8) and T ($,6) with the receiving antenna patterns
Al(w,e) and A (w e) gives rise to the received cosmic noise

temperatures Tc2 and Tc wanted:

T z( )"l— ¢ * 9)A2(¢=¢+w 8)cos 6 do dd (D.3)
c w.y T an f =f b (¢, v? C .
=0 ¢
T (y.) L ij }[2 T ( (y= ( )
v )= s8)A (y=¢+y ,0)cos 6 do dg D.4a
c 'y 41 620 g=2n/2 p ¢ ) wY )

-

RecaH that 10 10910 A (¢,6=0) and 10 10910 A/(w 6=0), i.e.,

receiving antenna patterns in dB in the ec11pt1c plane, were shown

in Fig. 3.4. For lack of knowledge, A* (v,0#0) and A*(y,8#0) are

assumed to have the same nomalized patterns as Az(w,e=0) and
(v,6=0), respectively, such that

2/ ..
27 cos“(5 sin o)
1 fnl?, 1 A 2
5 A*(yp,6#0)dy = 5— A (y,6#0)dy = 1.64 (D.4b)
2T 420 i 2m wl; cos® §

power pattern of a half-wave dipole
Notice that this equation along with
7 J Ae0)dy = o= [ A%(y,6=0)dy = 1.64 (D.4c)

0 0

gain of a half-wave dipole in the ¢ = 0° plane

assures that

/2 2n  7/2
LA " “ -
— P,08)cos 6 do dy = A (y,8)cos o dp dy
b 0 ‘T'!/‘ 4w;r ‘7‘!;2

the conservation of total power radiated when the antennas are used
for radiation.
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where, as defined in Sec. III.C,

¥ = longitude measured, with origin at Pioneer 9, counterclock-
wise (when looking from the north ecliptic pole) in the
ecliptic plane from the axis of the sun sensor

and wY = ¢ of the vernal equinox (Fig. D.1)

As the receiving antenna patterns spin with period =1 second (Sec. III.C),
wY and hence Tcg(wY) and ‘Té((wY) change recurrently with the same
period. After numerically integrating (D.3) and (D.4), it is found

that for wY = 0° to 360° (i.e., for one whole period of spacecraft

rotation),

5440 °K TC’L(wY) $ 5920 °K (D.5)
-2.32
is of order ({%%j%) =~ 143 higher than
A
oy < < o
36 °K < TC (wY) < 43 °K (D.6)
-2.32

thereby agreeing with the frequency scaling law v used in

(D.1) and (D.2).
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Appendix E
RECEIVED SOLAR NOISE TEMPERATURE T,

In view of the fact that (a) solar radio emission is a complex,
fast fluctuating phenomenon and (b) no measurements of this phenom-
enon were made at times of taking Format D data in the direction of
the spacecraft, it is concluded that only an estimate of TS is
possible. Luckily, as will be seen soon, TS is much smaller than
other noise temperatures {except when intense solar radio bursts occur)
and therefore plays a relatively unimportant role.

The radio emission from the sun has three distinct components
[Kundu (1965)]: (a) the quiet sun component, due to thermal emission
in the solar atmosphere; (b) the slowly varying component, due to
thermal emission in regions of high electron densities and magnetic
fields that exist in the vicinity of sunsports and chromospheric
plages; and (c) the rapidly varying component, due to burst-radiation
from all levels of the solar atmosphere. The quiet sun component is
a background component remaining at a constant level for period§ of
months or years. The regions generating the slowly varying component
(or, for short, the S-component) may persist over several solar
rotations; thus, as the sun rotates (in the same direction as the
earth's daily rotation and annual revolution) with period 27 days, the
S-component observed at the earth is expected to exhibit a 27-day
periodicity.

Finally, the rapidly varying component, generally associated
with solar flares and characterized by great variability and complex-

ity, may only last over intervals of seconds, minutes, or hours.
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The solar radio flux density has been measured daily at a number
of frequencies ranging from 100 MHz up to 15.4 GHz by various ground
observatories, with its daily mean F tabulated in IAU (International

Astronomical Union) Quarterly Bulletin on Solar Activity. An auto-

correlation analysis Qf F has revealed that it tends to recur
periodically with period =27 days over several solar rotations; more-
over, the rotation of the sun along with its active regions (from
which the S-component originates) is thought to be responsible for
this recurring tendency [E1-Raey and Scherrer (1972)].

Adopting the above result (i.e., 27-day periodicity), choosing
available data of F at frequencies closest to 49.8 and 423.3 MHZz,

and using an appropriate frequency-scaling law [see Kraus' (1965)

2

d and T&éf for each set of our

Fig. 8-21], we have derived T

Format D data, where

dl and Tdd’ = the apparent disk (or brightness) temperatures

of the sun observed in the direction of the

T

receiver, on the date of taking Format D data,
at frequencies 49.8 and 423.3 MHz, respec-
tively.

Analogous to (3.24) and (3.25), the received solar noise temperatures

(referred to the receiving antenna terminals) are

2n /2
L 1 2 L,
Te (ws) iy f f Ty (4,6)A (w—¢+ws,e) cos 6 do do
¢=0 0=-m/2
Q ]
I T Ay ) :
= Tqg A (ug,6=0) (E.1)
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A s A £ _
T () = 2= T A" (vg,6=0) (€.2)
where

2 1 A.U.)2

PS

& 0 = o, x (LA)" - 6.8 ¢ 105 x (

steradian (E.3)

is the solid angle subtended by the radio sun at the receiver aboard the

spacecraft, y_ is the ¢ of the sun (Fig. D.1), and PS is the

s
Pioneer-to-sun distance. As evident in (E.1) and (E.2), Tsz(ws) and

! Ts‘kws) are, except for consfant scaling factors, identical to the
receiving antenna patterns in the ecliptic plane Al(ws,e=0) and
A‘iws,e=0), respectively. Due to the spin of the spacecraft, ws’
Tsl(¢s), and Tsx(ws) [like vy s Tcz(wa, and Tclkwy)] are all
periodic functions of time wi;h period equal to that of the spacecraft

rotation (= 1 sec). Typically,

%y ) = 20 °
T (w) = 20 °K (E.4)

4]

‘ o
T (vg) =10 °K (E.5)

Both are much smaller than other received noise temperatures and there-

fore are less important.
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Appendix F
"~ ON COMPUTATING THE AUTOCORRELATION FUNCTION OF INTENSITY FLUCTUATIONS

In order to save the computational time required, the autocorrela-
-tion functions of intensity fluctuations are computed using FFT (fast-
Fourier transforms). The basic idea is originated from the fact that
the product of the DFT (discrete-Fourier transform) of any periodic
sequence and its complex conjugate is equal to the DFT of the circular
autocorrelation function of the sequence. To verify this point, con-
sider a real, periodic sequence x(nt) of period N with its N-point

DFT X(kQ) defined as

N-1

X(ka) = DFT{x(n)} = 3" x(n7)e 7Nk (F.1)
n=0 :
where Q = %% . Then, there exists an inverse DFT (IDFT), a transforma-

tion that maps X(k§&) back into x(nT):
1 jorkn
x(nt) = IDFT{X(kQ)} = § 2. X(kR)e (F.2)
k=0

As evident from (F.1) and (F.2), both the sequences X(kQ) and x(nt)
are periodic with period N samples. It is also evident from (F.1)
that X(kQ) may be determined exactly from just one period of x(nt).

Using (F.1) and (F.2) gives rise to

TDFT{X(kQ)X*(kQ)} = % M X (k) X* (kg)ed 4TKD
N-1 [N-] . N-1 . .
=% [ x(r‘r)e-‘]mrk] « [Z X(ST)EJQTSk] eJQTkn
k=0 tr=0 s=0
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N-1 N-1 N-1 .
= ZO 2:0 x(YfT)X(ST)[%— kzo eJ2nk(n+S-Y‘)/N] (F.3)
r= S= =

Applying the orthogonality relationship [see, for example, Brigham (1974)]

N-1 .
%. pd2mk(nts-r)/N _ §(n+s-r) (F.4)
k=0
to (F.3) yields
c N-1
[OFT(x(ka)X*(ka)} = R “(ne) = 2 x(sc)x(stén)
S:

the circular or periodic autocorrelation
function of x(st) obtained by circularly
correlating x(st) with itself (F.5)

nhich is the desired result. The direct evaluation of Rxc(nr) =
}if x(st)x(st+nt) for all n = 0,‘1, 2, . . ., N-1 requires N2
5;21 multiply-add operations, while the indirect evaluation of

R S(nT) via calculating IDFT{X(k)X*(k2)} = IDFT{|DFT[x(s7)]|?}
requires only on the order of 4N1ogzN complex multiply-add opera-
tions if N is a power of 2 and if the FFT algorithm is employed to
compute the DFT and the IDFT.+ Therefore, for moderately large N,
say N greater than 1,000, the indirect evaluation results in a

dramatic saving (greater than 92 percent) in computational time.

" The FFT algorithm is a highly efficient method for computing the DFT

and the IDFT of a series of discrete data samples. If the series
consists of N = 2P samples, then only about NlogoN = Np complex
multiply-add operations are needed to compute all N associated

DFT or IDFT coefficients. Many fine texts and papers dealing with
FFT have been written. Some of the more recent include Brigham
(1974), Rabiner and Gold (1975), and Oppenheim and Schafer (1975).
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Notice that the "noncircular" (or aperiodic) autocorrelation

function of the x(st) sequence is defined by [see also (4.10)]

R N-n-1
Rx("T) = Wen gg% x(st) x(st+nt) (F.5)

which can be easily proved to be related to the circular autocorrela-

tion function Rxc(nr) defined in (F.5) by

Rxc(nr) = (N-n)R (nt) + nR (Nc-nt) (F.6)

as illustrated in Fig. F.1. The effect on Rxc(nr) of adding zeros
to x(st) 1is to spread apart the two portions of Rxc(nr). In
particular, suppose N zeros are appended to form the new periodic

sequence

[ ¥aN
wn
IN

x(st) 0 N-1 ‘
x'(st) = (F.7)
0 N <s < 2N-1

of length 2N; then, the circular autocorrelation function of the new

sequence becomes

(N-n)Rx(nT) 0 <nSN-1 (F.8a)
R, (nt) = {0 n=N (F.8b)
(n—N)RX(ZNr-nr) N+1 < n < 2N-1 (F.8¢c)
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(N-n)R, (nT)

—
)

nRy(NT-nT)

Fig. F.1. TWO PORTIONS OF A CIRCULAR
AUTOCORRELATION FUNCTION Rg(nr).

/\ /\ /

Fig.

F.2.

(2N-I T

SPREAD OF R;(nr) WHEN N ZEROS ARE APPENDED TO x(nt).
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as depicted in Fig. F.2. If the length of the original sequence

N and hence the length of the new sequence 2N are powers of 2,
Rx.c(nr) can be computed via FFT, thereby yielding Rx(nr) through
(F.8a) at high (FFT) speed. If N and hence 2N are not powers

of 2, then the original sequence x(st) could be augmented with

Nz(N < Nz < 2N) zeros until N + Nz reached a power of 2. The new

sequence

x(s1) 0 s < N-1
x"(sT) = (F.9)
0 NSsg s N+Nz-1

has an autocorrelation function

(N-n)Rx(nr) 0 <s ZN-1 (F.10a)
- < <

Rx..(n'r) =10 N3s SN, (F.10b)
< <

(n-NZ)Rx(NT+NZT-nT) NA4T S s SN +N-T (F.10c)

which can, again, be calculated via FFT to yield Rx(nt) through
(F.10a) at high speed.

Basically, the preceding computational method can be applied diréctly
to AI(kt') [defined in (4.11)] to efficiently obtain the "non-“
circular" autocorrelation function of intensity fluctuation RAI(nT')
desired. However, because the original IPS data are interspersed
(1) regularly with sun pulses and experimental information and (2)
occasionally with spurious values (due probably to loss of signal in
the transmission link or failure of the equipment), there are gaps

in the data, and these gaps have to be replaced by some reasonable
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values before the FFT of the data may be taken.+ A number of replace-
ment schemes had been considered, none of which appears to be fully
satisfactory. '

Recall from Sec. III.D that the Format D output was fed into a low-
pass filter of baﬁdwidth 10 Hz before being sampled; as a result, the
frequency spectrum of I(kt') and hence of AI(kt') is expected, and
later confirmed by analysis, to have a bandwidth less than about 10 Hz.
In the time domain, this implies that I(kt') and AI(kt') are primar-
ily composed of sinusoidal components of periods greater than about 0.1
second (= 3.7 t'). Thus, theoretically speaking, if the data gap is
shorter than 0.1 second or so, it may be replaced with samples obtained
by linear interpolation between the existing data without introducing
serious distortions. [In fact, linear interpolation was also the scheme
employed by Cohen et al. (1967) in replacing their missing data of IPS
observations.] However, if a data set contains gaps longer than 0.1
second, linear interpolation will be misleading, and the best treatment
is simply not to use that data set at all.

In summary, the autocorrelation function of intensity fluctuation
RAI(nT') [or, equivalently, the autocovariance function of the inten-
sity AI(nr')] is calculated via the following steps:

1. Check the data gaps in a given set of clean IPS data I(kt').

2. Discard the whole set of data if it contains any gaps longer
than about 0.1 second, or if it does not, replace the gaps by
linear interpolations between the existing data.

3. Compute the average (of the interpolated data), I, and
subtract T from the interpolated data to obtain

¥ Setting I(kt')'s in the gaps equal to zeros would generate ungenuine
discontinuities in the data, thereby resulting in an erroneous spectrum
when the FFT of the data is taken.
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the intensity fluctuation AI(kt') = I(kt') - T, k=0,
1,2, . . ., N-1.

4. Append N T zeros to the sequence AI(kt') such that
(N + Nz) 1s a power of 2 to form a new sequence Al'(nt').

5. Compute S(kQ) = FFT {AI'(nt")}, k=0,1, .. ., N+ N, - T

6. Compute RAI.(HT') = IFFT {S(kQ)}, n=0,1, .. .,
N + N - 1.

7. Preserve only the first N i points of RAI.(nT') and
multiply each point by (N + Nz)/(N - n) to yield RAI(nr'),

n=0,1, ..., Nm - 1.

T In general, if only the first Nm(<N) values of the noncircular

correlation function RAI(nT') [i.e., RAI(O)’ RAI(T'), c e e
RAI(Nm - 1)] are wanted, then the number of zeros appended

Nz 2 Nm will suffice. The reason is that augmenting AI(kt')

with NZ zeros will cause the second portion of the circular auto-
correlation function RAf(nT') to be spread apart from the first
portion by Nzr'(2 Nm t'), which is enough for obtaining the first

Nm points of RAI(nT ) unbiasedly.

" Although some FFT subroutines do not require the length of the

input data to be a power of 2 [e.qg., Singleton's (1969) FFT sub-
routine], maximum computational efficiency is always achieved when
the length of the data is a power of 2.
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Appendix G
ON COMPUTING THE POWER SPECTRUM OF INTENSITY FLUCTUATIONS

1. General Considerations

Mathematically, the power spectrum FI(v) of intensity fluctuation
AI(t) (which is assumed to be stationary) is defined as the Fourier
transform of the autocorrelation function RAI(t) of intensity fluctua-

tion:

Fro) = f Ry (t) e 32t g (6.1)

where t denotes time. As evident from the above equation, precise
determination of FI(v) would require RAI(t) and in turn AI(t)
to be available continuously over infinitely long duration (from -
to =). This requirement is, of course, physically impossible to
fulfill. In most practical cases, only a sample function+ of the
random process over a finite duration is observed. Furthermore, in
order for the observed function to be processable by a digital computer,
it must first be passed through a sampler (or an A/D converter) and
transformed into a finite, discrete time series consisting of sampled
values of the original function. Any power spectrum estimated from
such a finite, discrete time series is inherently contaminated by at
least two types of errors: leakage and aliasing.

Leakage arises from the fact that the original function and hence
its digital samples are known only for a finite time interval (time

truncation). The sharp discontinuity in the time domain due to this

T A random process is composed of an ensemble of time functions; the
individual time functions are caiied “sampie functions® of the random
process [see, for example, Wozencraft and Jacobs (1965)].
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truncation is expected to produce additional frequency components or
sidelobes in the frequency domain. As a consequence, the original
concentration of energy at a certain frequency will be smeared or
“leaked" into the sidelobes.

Contrary to leakage which is caused by the fact that the observed
function is time-limited, aliasing ensues from the fact that the
observed function is not band~1imited*; consequently, sampling must
creat errors*. Generally speaking, if the sampling rate for a con-
tinuous waveform is 2vs, then frequency components originally below
Vg in the continuous waveform will appear in the spectrum of the
sampled waveform as they ought, while all companents above Ve will
fold over into the frequency band between 0 and Vg and appear as
impersonations of aliases. For example, a component at v + v
'(Q < vs) in the 6rigina] waveform will appear in the spectrum of
the sampled waveform as an alias (1) at Vg =V if n=1, 3, 5,

.» or (2)at v if n=2,4,6, ... This shifting (or fold-
over) of high-frequency information into lower frequencies (arising
from sampling at too low a rate) is usually referred to as aliasing.

Because of these two intrinsic errors and, furthermore, because

only a sample function AI(t) of the random process A:i(t) is

Because time-limiting and band-limiting are mutually incompatible
[see, e.g., pp. 97-98 of Carlison (1968)], the observed function
which is time-limited cannot be band-1imited.

¥ The well-known sampling theorem (Nyquist criterion) states that
when sampling a continuous waveform, the sampling rate must be
at least twice the highest frequency present in the continuous
waveform for the continuous waveform to be completely character-
ized by the sampled waveform. Thus, for a continuous waveform
which is not bandlimited, the sampling rate would have to be
infinitely fast in order to satisfy this criterion, and any finite
sampling rate would inevitably result in errors.
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observed, the power spectrum FI(v) can merely be estimated approx-
imately at best. Assuming that AJ(t) is an ergodic process, i.e.,

a random process for which ensemble (or probability) averages are
equal to time averages, then all its statistics can be determined
from a single sample function. However, since the samp}é function
AI(t) is always available only over a finite duration (< 30 seconds
or so), the following question arises immediately: can 30-second data
of AI(t) provide a statistically meaningful estimate of FI(v)?

First, recall from Chapter II that most of the intensity fluctu-
ations are caused by turbulent eddies about the size of the first
Fresnel zone vXZ (= 800 km at 49.8 MHz or 250 km at 423.3 MHz for
most Format D data). As the solar wind moves across the propagation
path at a speed ~ 350 km/sec, AI(t) received at the spacecraft
during 30 seconds will contain the effects resulting from about 15
(at 49.8 MHz) or 40 (at 423.3 MHz) Fresnel-zone-sized scatters, which
appears to be barely enough for yielding a statistically meaningful
estimate of FI(v). Although the above discussion has left an impres-
sion that the longer the data record, the better the statistical
estimation, one must, on the other hand, realize that the nonstation-
arity of the interplanetary medium would tend to impose an upper 1jmit
on the maximum usable length of the data.

Based upon estimation theory, a variety of methods have been pro-
posed for powér spectrum estimation. [See, for example, Blackman and
Tukey (1958), Welch (1967), and Oppenheim and Schafer (1975).] But
before proceeding with any method, there is one more’preliminary
question to be considered: How serious is the aliasing error present

in the data to be analyzed?
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The answer to this question is exceedingly important, for failure
to adequately examine this question first can make the entire subsequent
computation worthless or frequently, even worse, produce completely mis-
leading results. Clearly, if the aliasing error is too heavy, then the
appearance of the power spectrum will be dominated by this error+ rather
than by the physical phenomenon to be investigated; consequently, it
will be pointless to go any further. |

Insofar as Format D data are concerned, recall again that the signal
is fed through a low-pass filter (or "guard filter," or "anti-aliasing
filter," in digital-signal-processing terminology) of bandwidth 10 Hz
before being digitized. At sampling rate 36.6 sample/sec, any aliasing
effects would involve only components of frequencies greater than 18.3 Hz
(which is greater than the 10 Hz bandwidth of the pre-sampling low-pass

filter) and hence are not expected to be too serious.

2. Power Spectrum Estimate by the Blackman-Tukey Method : *

Of the various techniques for power spectrum estimation, the so-
called Blackman-Tukey method (1958) has been most widely adopted in the
field of interplanetary scintillation studies. [See, for instance,
Cohen et al. (1967), Cohen and Gundermann (1969), Intriligator and Wolfe
(1970), and Unti et al. (1973).] When applying this method to our
Format D data, the procedures for estimating the power spectrum FI(v)

of intensity fluctuations can be briefly outlined as follows:

T For example, if the spectrum of a continuous waveform is believed
to spread out up to 1 kHz with substantial amplitude and if the
sampling rate for this continuous waveform is only 20 Hz, then the
spectrum of the sampled waveform (from O to 10 Hz) will look nothing
like the original spectrum, but the original spectrum (from 0 to 1
kHz) folded one hundred times over into the frequency range
0 <v <10 Hz.
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1. Let AI(kt'), k=0,1, ..., N-1, be a zero-mean,
N-point sequence of intensity fluctuations, where T’
is the time interval between adjacent samples, and let
RAI(kr'), k=0,1,. . ., m+, be the autocorrelation
function of the intensity fluctuations attained from

the preceding section. Form the sequence

Ryp(kt') 3 0<k<m
r“zM(kr') = (6.2)
RAI[(Zm-k)r']; m1 < k < 2m-1

2. Compute the 2m-point FFT of ﬁAI(kT') to yield ?I(v)
the raw estimate of FI(v):

e p ] Y ) #
FI(v) = FI(rvo) =1' « FFT {RAI(kT )} (G.3)
where r=0,1,2, .. ., 2m-1, Vv = rVgs and
v = 1 (G.4)
o 2mt' )
- is the resolution bandwidth of the raw estimate ?I(v).

Since ?I(rvo) is symmetric in & with respect to
every integral multiple of m, the last m points
of ?I(zvo) may be disregarded.

T For efficiency of the succeeding FFT computation, the maximum auto-
correlation lag m is normally chosen to be a power of 2; moreover,
as will be discussed shortly, m has to be smaller than a moderate.
fraction (say, 15 per cent) of N in order to secure a reasonable
stability for the power-spectrum estimate.

Invoking the definition of FFT and substituting (G.2) and (G.4) into
(G.3) leads to

2m-1 -j2mwv_t'kr

m-1
- - ] 0 - ', B 5 ]
Fiirvg) = 2 Ryke') e o Ry (0) + 2 2 Ryy(ke')

Tr

x cos ( -

) + ﬁAI(mT') cos mr]

which is identical to the equation of raw spectral density estimates
given by Blackman and Tukey (1958) on p. 121.
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3. Compute FI(rvo), the refined estimate of FI(V)’ via

0.54 F (0) + 0.46 FI(\,O) s r=0
Frlrv,) = 0.23 Fy[(r-1)v,1+0.54 EI(r\,o)+o.23 ~FI[(M)\,O]; r=1,2,...,m-1
0.54 FI(mvo) + 0.46 FI[(m-l)vo] 5 r=m
(G.5)
Step 3 above is equivalent to convolving El(rvo) with
H(v) = 0.54 Q(v) + 0.23 [Qlv + gor ) + Q( v= it )] (6.6)
where
Q(v) = 2’ .« sinc(2m'y) = 2m’. Si02mmt'v) (6.7)

2mmt' v

In the time domain, this corresponds to multiplying ﬁAI(kr') by the

Hamming (after R. W. Hamming) window

0.5440.46 cos ( I ) 5 |t] < mr’
h(t) = 577 (Q)} =
0 s [t] > mr
(G.8)
before takihg FFT to yield EI(rvo) directly and is commonly
referred to as "windowing." As evident from the form of h(t) in
(G.8), the main purpose for windowing is to reduce the discontinuity,
and hence the leakage error, introduced by the rectangular truncation
of RAI(kT') in the time domain.
The cost for such leakage reduction is that the effective resolution
1

bandwidth Be of power-spectrum estimates has been broadened from il

to [Blackman and Tukey (1958)]
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3. Stability and Confidence Limits of Power-Spectrum Estimates

If {AI(kr')}, k=0;1,2,...,N, are gaussian and independent, then
it can be easily proved [see, for example, Otnes and Enochson (1974)]

that so are {AJ (m])}, where

r =20,1,2,... N/2 (G.10)

As(rv]) = DFT{AI(kt ')} (G.11)
and . _

\)-I = N-T—' (G.]Z)

~A

As a consequence, FI(rvo) derived from the preceding subsection will
follow a Chi-square distribution with the number of degrees of freedom

[Otnes and Enochson (1974)]
n= =— (G.13)

Recall that N is the total number of AI(kt') originally available,
and m 1is the maximum lag of RAI(kT') used to attain FI(rvo). For

most Format D data,

N < 1088 (G.14)

and for reasons stated in the footnote on p.

m = 128, 64, or 32 (G.15)
have been invariably selected. Thus,

n=16, 32, or 64 (G.16)

depending upon which m 1is chosen.

209




The stability of FI(rvo) can therefore be expressed in terms of

the probability P that FI(rvo) lies between A and B:

Prob [A < Frlrv,) < 8] =P

where E ( )
n rv ~
- I 0 = .
T2 ¢ FI(rvo)
X 1P
> 2
and R
nF(N) A
I 0" _ .
o, P
* 2

(6.17)

(6.18)

(G.19)

Another way to interpret (G.17) is the following: With 100 - P %

confidence, the true value of FI(rvo) lies between A and B.

For N = 1024, the values of C and D

in dB plus some other rel-

evant parameters peculiar to our power-spectrum estimates are listed

in Tables G.1 and G.2 for P = 0.80 and 0.90, respectively.

m n=2N/m C D o D-C
Maximum Auto- Degrees of Lower Limit, Upper Limit, Spread,
Correlation Lags Freedom ds dB dB

128 16 -1.68 2.35 4.03
64 32 -1.24 1.57 2.81
32 64 -0.91 1.07 1.98

Table G.1. 80% CONFIDENCE LIMITS FOR N = 1024.
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m n=2N/m C D D-C

Maximum Auto- Degrees of Lower Limit, Upper Limit, Spread,
Correlation Lags Freedom dB dB dB
E ‘ 128 16 -2.16 3.03 5.19
| 64 3 -1.59 ©2.03 3.62
’ 32 64 -1.16 1.38 2.54

Table G.2. 90% CONFIDENCE LIMITS FOR N = 1024,

Although these stability‘results are exact only when {AI(kt')}'s are
Gaussian and independent, they usually serve as rather good approximations
in practical situations when such assumptions are not closely satisfied
[Blackman and Tukey (1958)].

It can be gathered from the confidence limits given in Tables g.} and
G.2 that for a fixed value of N, the smaller the value of m selected,
the more stable the resultant power-spectrum estimate. On the other
hand, for the purpose of fine resolution, the value of m has to be
large [see Eq. (G.9)]. Accordingly, there exists a compromise (or
trade-off) between stability and frequency resolution for any specific ’
value of N; one can increase stability (or frequency resolution) only
by sacrificing frequency resoilution (or stabi]ity).4 To further illustrate
this point, Table G.3 lists the effective resolution bandwidth Be,_along
with Vg the ratio of RMS (root-mean-square) deviation of the power-
spectrum estimate to its average (or true) value for N = 1024 and
m = 128, 64, and 32, respectively. Note that for a Chi-square distribution

with n = 2N/m degrees of freedom,
€y = v2/n = vV mN (G.20)

It is clear from this table that one can improve frequency resolution
at an expense of variability, and vice versa.
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m Maximum : Be = 1/mrt’ e = vm/N

Maximum Auto- Lag in Effective Resolution Normalized RMS
Correlation Lag Sec Bandwidth Deviation
128 3.5 sec 0.29 Hz 0.35
64 1.75 sec 0.57 Hz 0.25
32 0.88 sec 1.14 Hz 0.18

Table G.3. Be AND € FOR N = 1024.

In order to find good compromises for individual power spectra, each
spectrum is normally calculated using two or all three different values
of m (occasionally a fourth value of m, m = 256, is also tried to
see the general trend of this trade-off), and the best compromise if
picked out by human judgment. Generally speaking, when the background
noise level (including the quantization noise, the noise resulting from
instability of phase-locked loop, etc.) is low compared with the signal,
m/N = 1/8 appears to be a good choice; on the contrary, when the back-
ground noise level is high, m/n = 1/32 1is required to secure a reason-

able stability of the estimate.
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